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ABSTRACT

Spatial Light Modulators (SLMs) have been successfully used for beam sculpting in the area of optical ma-
nipulation, however in some applications their associated pixelation, slow switching speeds, and incident power
limitations can be undesirable. An alternative device that overcomes these problems is the Tunable Acoustic
Gradient index (TAG) lens. This device uses acoustically induced density and refractive index variations within a
fluid to spatially phase modulate a transmitted laser beam. The acoustic waves within the fluid are generated via
a piezoelectric transducer. When driven with a frequency-modulated signal, arbitrary optical phase modulation
patterns can be generated at regular time intervals. The resulting sculpted beam is best observed using a pulsed
laser synchronized to the frequency-modulated signal of the TAG lens. As this device is purely analog, there is
no pixelation in the phase modulation pattern. Also, because the only major requirement on the fluid is that
it be transparent, it is possible to select fluids with high damage thresholds and high viscosities. High damage
thresholds allow the TAG lens to be used in high power applications that would be unsuitable for an SLM. High
viscosities provide fast damping of transient density variations and increase switching speeds between patterns.
Discussion here will be limited to axially symmetric beam sculpting, however the results can be generalized to
asymietric cases.
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1. INTRODUCTION

Laser beam shaping has lately become of interest especially in the fields of optical manipulation and atom
optics. In optical micromanipulation alone, the resulting complex beams have been used in many applications.
A few examples include particle sorting and cytometry,"? microfluidic pumps,® the study of 2D colloidal phase
transformations,*® and the assembly of of microscopic structures.® In atom optics, uses for complex beams
include trapping atoms in an optical bottle beam” and transporting cold atoms.®

Currently, the demand for adaptive optics in the fields of optical manipulation and atom optics has been met
primarily using using spatial light modulators (SLMs).% 1% However, SLMs do have some limitations. First, they
are digital devices, and as a result their output is pixellated, which can degrade beam quality. Second, they have
limited refresh rates. Typical spatial light modulators use nematic liquid crystal arrays. Reorienting the liquid
crystals is a relatively slow process that limits frame rates to around 100Hz.'! There do exist ferroelectric SLMs
that can operate at rates above 1kHz, however these devices are only binary spatial light modulators; that is,
each pixel can only impart one of two given phase delays on the wavefront.!! Third, SLMs have incident laser
power limitations due do the delicate nature of the liquid crystals.

An alternative method for adaptive optics is the liquid-filled tunable acoustic gradient index (TAG) lens.1? 14
This method can be thought of as an analog counterpart to the currently digital adaptive optics. TAG lenses
do not have the same limitations as SLMs, and therefore may be more suitable in some applications. First,
TAG lenses are analog, so there are no pixellation effects. Second, they have fast switching speeds, as high as
20 kHz, although for optimum pattern quality, refresh rates closer to 1 kHz were used.!® Switching speed can
be improved by filling the TAG lens with fluids having a greater viscosity and speed of sound. Third, because
a wide range of filling fluids are available, it is possible to design the TAG lens to withstand very large laser
powers.
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Figure 1. Cartoon illustrating the construction of the TAG lens.

This proceeding will demonstrate that TAG lenses have the potential to be significantly more versatile than
has been previously reported. So far, these lenses have been shown only to produce multiscale Bessel beams
using single-frequency input signals.' !4 By using more complicated, multiple frequency signals, it is possible to
generate approximations to arbitrary spatial refractive index distributions throughout the lens. Currently, only
axisymmetric TAG lenses have been studied, however the ideas presented in this proceeding can be extended to
rectangular geometries, allowing a wider range of allowable beam shapes.

2. TAG LENS BASICS

The full description of the TAG lens has been provided in other publications,!?71% however a quick overview of
the device follows. The lens operates by generating acoustic variations in density within a fluid. These density
variations create a gradient in refractive index, allowing the device to function as an optical lens. Previous TAG
lenses have come in the form of a cylindrical cavity filled with a transparent liquid. The assembly of such a TAG
lens is illustrated in Fig. 1. The circumference of the chamber is a hollow piezoelectric tube, which is electrically
driven in the radial direction to generate acoustic waves that propagate toward the center of the chamber. In
steady state, single frequency operation, this device has been shown to produce multiscale Bessel beams.!?

3. PROCEDURE
3.1. Frequency Response

The end goal of the following procedures is to solve the inverse problem: determining what voltage signal is
necessary to generate a desired refractive index profile. However, before directly tackling this question, it is
easier first to find the response of the lens to a single frequency, and then to solve the forward problem addressed
in the next section: determining the index profile generated by a given voltage input.

The first step of the procedure is to find the frequency response of the TAG lens. We assume a linear model
of the TAG lens.'* That is, the oscillating refractive index created within the lens is linear with respect to the
driving frequency. Listed below are the single-frequency input signal and resulting output refractive index within
the lens.

V(tf) = Re|V(f)e ] (1)
n(r,t, f) = no+ Re[n(f) Jo(2mkr) emet] . (2)



Here, f is the electrical driving frequency of the lens, ng is the static refractive index of the lens, V( f) is the
driving voltage complex amplitude, and k is the spatial frequency given by f/cs where ¢, is the speed of sound
within the fluid.

From this frequency response, a transfer function can be defined to relate the index response to the voltage
input:

O(f) == e C. (3)

4

This transfer function can either be determined empirically, or through modelling,'* and accounts for both

variations in amplitude and phase.

3.2. Forward Problem

For the forward problem, we assume that the lens is driven with a discrete set of frequencies at varying amplitudes
and phase shifts. One could also phrase the problem in terms of a continuous set of input frequencies, however
as is seen later, the solution to the discrete set will be more useful when dealing with the inverse problem.

We assume an input signal of the form,

where each Vm is a given complex amplitude.

By linearity and the results of the frequency response in Eq. 2, the corresponding refractive index in the lens
is known to be,

n(r,t) = ng + Re

M
Z o Jo (27 k1) eQﬂf’”t] . (5)

m=1

The coefficients 7., can be determined from the frequency response to be,
Egs. 5 and 6 are the solution to the forward problem.

3.3. Inverse Problem

The inverse problem is to determine what input voltage signal, V(¢), is required to produce a desired refractive
index profile, ngeqi(r). From Egs. 1 and 2, it is evident that the actual refractive index is a function of both
space and time, while the input electrical driving signal is only a function of time. As a result, it is not possible
to create any arbitrary index of refraction profile defined in both space and time, however this paper will show
that it is possible to approximate an arbitrary spatial profile that repeats periodically in time. We will assume
that the arbitrary profile is centered around the static index of refraction, ng. We will denote the deviation of
the goal from ng as ngeqi(r), and the frequency with which it repeats in time as frep.

The procedure is depicted as a flow chart in Fig. 2. First, ngeq (r) is decomposed into its spatial frequencies
using a Fourier-Bessel transform. This result is then discretized so that only spatial frequencies that are integer
multiples of fr.,/cs are included. Then, in order to write the index response in the form of Eq. 5, an inverse
Fourier-Bessel transform is applied to the discrete series. This gives the coefficients n,,, which are used in
conjunction with the frequency response to yield the required voltage signal in the frequency domain. Summing
over all modes provides the final answer, V (t).

The first step is to decompose the desired index profile into its spatial frequencies using a windowed Fourier-
Bessel transform because of the circular geometry of the lens. Given ngoq1(7), goal(k) can be computed as,

7A7fgoal(k) = /(; ngoal(T) J0(27T7"k) 2rr dr, (7)
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Figure 2. Flow chart of process for solving the inverse problem.

where r is the inner radius of the lens. Depending on the desired index goal, ngeqi(7), this windowing may
introduce undesirable Gibbs phenomenon effects near the edge of the lens if n404:(r) does not smoothly transition
to zero at r = ry. However, the significance of these effects can be reduced by either modifying the goal signal,
extending the limit of integration beyond 7, or simply using an optical aperture to obscure the outer region of
the lens.

From inverse-transforming we know that,
ngoal(r) = / ﬁgoal(k) JO (27T]€7") 27k dk. (8)
0

However, each of the spatial frequencies will oscillate in time at its own frequency given by f = csk. As a result,
the goal pattern can only generated at one point in time. If this time is ¢ = 0, then the time dependent index of
refraction will be given by,

nWMM:R%/i%MMh@Wﬂwéwwwk (9)
0

In practice, one would wish the goal index pattern to repeat periodically in time, as opposed to achieving it
only at one instant in time. Therefore, the second step of the procedure is to discretize the spatial frequencies
used so that the ngqi(r) can be guaranteed to repeat with temporal frequency fre,. This is acheived by only
selecting spatial frequencies that are multiples of fy..p/cs. That is, we assume that,

ke%hﬁglz{mﬂw}M . (10)

Cs m=1

The upper limit, M, is set sufficiently large so that the contribution to ngeqi(r) is negligible from spatial fre-
quencies higher than M f,.,/cs. It is also required that ngeq () and frep are chosen so that the contribution is
negligible from spatial frequencies lower than f,.,/cs and so that the discretization accurately approximates the
continuous function. The lower f,..,, the more accurately the discretization will reflect the continuous solution,
however it also means that there will be longer intervals between pattern repetition.

This discretization changes the integral in Eq. 9 into a sum:

M
n(r,t) = ng + Re Z Ngoal (km) Jo(2m k1) 27k, e?mifmt AL | | (11)
m=1
where Ak is the spacing between spatial frequencies, in this case given by frep/cs. The third step of the procedure
is to compute this sum. At this point, one should compare 1444 () with n(r,0) to ensure good agreement. If the
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Figure 3. Figure illustrating a TAG lens acting as a simple converging lens.

agreement is poor, lowering fr.p, raising M, smoothing 74,4 (7), and continuing the integration in Eq. 7 beyond
ro can all improve the approximation.

By comparing Eq. 11 with Eq. 5 from Section 3.2, it is evident that,
T = 2Tk, Ak fgoqi (km ). (12)

Using the frequency response in Eq. 6 and rewriting k., and Ak in terms of f,¢p, this expression can be used to
find the voltage signal coefficients:

~ _ 2mm 3ep ﬁgoal(km) (13)
" P (fm)
The time domain signal is given by the same expression as in Section 3.2,
M
V(t) = Re Vin ememf] . (14)
m=1

Egs. 13 and 14 represent the last step and solution to the inverse problem.

4. EXAMPLE

In this section, we present an example problem, where we wish to create a simple converging lens with a specific
focal length, [, as shown in Fig. 3. Given this criteria, we wish to determine the voltage signal to be supplied to
the TAG lens so that it adopts this converging lens configuration with temporal period t,.,. The parameters for
the TAG lens in this example are given in Table 1. For the sake of simplicity in illustrating the above procedure,
we will assume a constant frequency response, ®(f). Note that in reality, ®(f) would vary greatly with frequency
near resonances within the lens. However, since this affects only the last step of the procedure, the exact form of
the function, while important for practical implementation, is unimportant here in demonstrating the solution
process. The form of ®(f) is discussed in detail in a forthcoming paper.*

The first step of this example is to determine the refractive index profile for a simple converging lens with
this focal length. Using small angle approximations, the angle by which normally incident incoming rays should
be deflected is given by,

Ogoal(r) = —1/L. (15)



Table 1. Parameters used in the example inverse problem.

Name Symbol Value
Focal Length l 1m
Temporal Period Lrep 1 ms
Inner Radius 70 5 cm
Lens Length L 5 cm
Sound Speed Cs 1000 ms~—!
Transfer Func. D(f) 10-3v-t
Largest Mode M 300
0 :
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Figure 4. Figure showing both the goal and the actual deflection angle as a function of radius at time ¢ = 0.

This goal angular deflection is shown in Fig. 4.

The corresponding refractive index profile required to deflect rays by this angle is given by,

1 [ o r?
ngoal(r) = Z o ggoal(r )dT = 727Ll' (16)

This function is plotted in Fig. 5.

The procedure described in Section 3.3 is now followed to obtain V(¢). Eq. 7 is used to decompose the goal
refractive index into its spatial frequencies. These spatial frequencies are then discretized with the lower bound
and spacing between frequencies given by frep = 1/trep = 1kHz. The upper bound is chosen to be 300 kHz,
which corresponds to M = 300. Both the continuous and discretized spatial frequencies are plotted in Fig. 6.
The value of M was chosen large enough so that the actual angular deflection reasonably approximates the goal,
as shown in Fig. 4.

The actual index of refraction at time ¢ = 0 is obtained from the discretized frequencies using Eq. 11 and
is plotted in Fig. 5. Note the very good agreement between the goal and actual refractive index profiles. This
good agreement is due to fr., being relatively small, and M being relatively large.

The angular deflection is obtained by differentiating the refractive index profile. This deflection is plotted in
Fig. 4. Note that the discrepancy between the goal and actual angular deflections is amplified relative to the
refractive index profile. This is because of the amplifying properties of the derivative. However, there is still good
agreement between the goal and actual deflections, except at the edge of the lens where the Gibbs phenomenon
can be observed because the refractive index does not smoothly transition to zero there. Better agreement could
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Figure 5. Figure showing both the goal and the actual refractive index as a function of radius at time ¢ = 0.
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Figure 6. Figure showing both the continuous and discretized spatial frequencies of ngoai(r).
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Figure 7. Figure showing one period of the time domain voltage signal required to generate the actual lensing effects
portrayed in Figs. 4 and 5.

be achieved by choosing a larger M or smoothing out the desired index goal. In some situations, choosing a
larger t,., would also be helpful.

Using Egs. 13 and 14, the actual voltage signal can be computed. It is periodic with period ¢,.,. One period
is plotted in Fig. 7. It is important to note that changes in ®(f) can change the form of this function. This
signal can be input into a function generator to drive the lens.

5. CONCLUSIONS

A method has been presented to approximately generate arbitrary axisymmetric index patterns, which repeat at
regular intervals. This allows a cylindrical TAG lens to act as an axisymmetric spatial light modulator. If instead
of a cylindrical geometry, a rectangular geometry was used for the TAG lens with two orthogonal piezoelectric
actuators, then arbitrary two dimensional patterns may be approximated without the axisymmetric limitation.
The only mathematical difference will be the use of Fourier transforms instead of using Fourier-Bessel transforms
to determine the spatial frequencies.

Compared to nematic liquid crystal SLMs, TAG lenses can have much faster frame rates limited only by
the liquid viscosity and sound speed. The frame rate of the example presented above was 1 kHz. If the
voltage signal was not precisely periodic in time, but varied slightly with each repetition, then pattern variations
could be achieved at this rate. This proceeding used only steady state modelling, however with fully transient
modelling even higher frame rates would be possible. Compared to binary ferroelectric SLMs, TAG lenses allow
for continuously spatially varying phase delays. Because of the simplicity and flexibility in the optical materials
used in a TAG lens, it is possible to design one to withstand extremely large incident laser energies. Due to its
analog nature, TAG lenses also avoid pixellation issues.

In addition to their advantages, TAG lenses do have some limitations that may make SLMs more suitable in
certain applications. Specifically, TAG lenses work best when illuminated periodically with a small duty cycle,
whereas SLMs are “always-on” devices. In some special cases, continuous wave illumination of TAG lenses may
be acceptable if the index pattern in the middle of the cycle is not disruptive.

Despite the limitations of the TAG lens, in areas where fast switching and spatially continuous wavefront
modulation are required, it should prove to be a valuable addition to the suite of available beam shaping devices
as the technology progresses.
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