
Trends in

Chemistry
Review
Scalable solution processing of amorphous
and crystalline chalcogenide films
Nikita S. Dutta1 and Craig B. Arnold1,*
Highlights
Chalcogenide materials are of interest for
an ever-growing list of applications in
optoelectronics, thermoelectrics, energy
storage, and more.

Amines and amine mixtures have been
shown to effectively process amorphous
and crystalline chalcogenide films from a
wide variety of precursors.

The solubility of elemental chalcogens
and metals allows fine-tuning of chalco-
genide composition through solution
processing.
Chalcogenide materials have attracted interest for diverse device applications, in-
cluding thermoelectrics, phase-change memory and optoelectronics, and even
solid-state batteries. Part of their appeal is solution processability, which offers a
potentially inexpensive, scalable route to thin film fabrication. A number of
solution-basedmethods have been explored with crystalline metal chalcogenides,
but combining industrially practical solvents with high-throughput film deposition
remains challenging. Similar issues are faced with amorphous chalcogenides,
where decades of work has focused on the role of dissolution chemistry in
processing high-quality films. Here, we outline recent progress in understanding
dissolution and film formation in both systems. By combiningwisdom from crystal-
line and amorphous chalcogenides, we aim to highlight fundamentals underlying
scalable solution processing and map areas for future study.
Annealing is essential to film formation,
and protocols have been developed
that lead to film quality on a par with
vacuum-based deposition techniques.

Recent work has leveraged the proper-
ties imparted by impurities in the as-
deposited film to fabricate solution-
processed doped or nanostructured
films.
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Combining wisdom from crystalline and amorphous chalcogenides
Chalcogenide materials have attracted interest for an ever-growing list of potential applications,
from phase-change memory for neuromorphic computing [1,2], to solid electrolytes and elec-
trodes for next-generation batteries [3,4], to thermoelectrics and topological materials [5,6].
Their breadth in properties of interest follows in part from diversity in the materials themselves;
unified by inclusion of the chalcogens sulfur (S), selenium (Se), or tellurium (Te), chalcogenides
can contain a wide array of other elements in structures ranging from 2D [7] to 3D, crystalline
[8,9] to amorphous [10], or even combinations thereof [11]. Even as these varied subsystems
have their own unique properties and considerations, there are many areas of overlap enabled
by their similar chemistry. This is particularly true in thinking about solution processing, a common
tool for fabricating thin films of chalcogenide glasses or crystalline metal chalcogenides. Here,
the structures that separate crystalline and amorphous materials are broken down and rebuilt
en route to the final thin film. Arsenic-sulfur (As-S) compounds, for instance, form similar
nanostructures during dissolution whether starting from a glassy or crystalline bulk precursor
[12,13]. Antimony-sulfur (Sb-S) compounds, meanwhile, form an amorphous phase on deposi-
tion that must be thermally transformed to the final crystal structure [14,15]. Solution processing
thus blurs lines between these two classes of chalcogenides at both ends, from dissolution to
film formation. This opens the door for productive exchange between the communities that
study them.

In developing solution-based routes for amorphous and crystalline chalcogenide films alike,
scalability is often of primary concern. Compared with vacuum-based methods [16,17], material
deposition from solutions – or more broadly, ‘inks’ – is generally less expensive and more indus-
trially practical. At times, this can come at the expense of film purity, so scalability gains must be
significant enough to make solution processing worthwhile for device applications. To this end,
significant advances have been made in recent years towards phasing out hazardous traditional
solvents [18–21] and expanding to novel non-chalcogenide and elemental precursors that allow
flexible and economical composition tailoring [22–24]. These are accompanied by improvements
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in thermal post-processing to bring film quality on a par with that of vacuum deposition [9,25].
However, gaps in our understanding of ink chemistry and its effects on film formation remain,
limiting our ability to fine-tune the phase, purity, and morphology of films through informed choice
of processing parameters. In many cases, the fundamental nature of these open questions cross-
cuts the amorphous and crystalline chalcogenide subfields.

In this review, we focus on combining wisdom from these adjacent systems on the chemistry
at both ends of solution processing: dissolution and film formation. For the former, we high-
light progress with amine solvents, which alone and in mixtures have come to take on a
prominent role in solution processing of amorphous and crystalline chalcogenides alike.
We describe their traditional uses in dissolving bulk chalcogenides and newer successes
with diverse non-chalcogenide and elemental precursors. For all three, we review recent
efforts to understand the underlying dissolution mechanisms. This leads to our subsequent
discussion of film formation, where we review how the species present in inks undergo
annealing-driven processes that determine the final material structure. Here, we highlight
avenues to enhance phase purity as well as the benefits of retaining certain controlled
impurities. By drawing connections between amorphous and crystalline systems at the
front and back ends of solution processing, we bring attention to open questions in our
fundamental understanding and highlight opportunities to develop new methods that further
exploit the scalability of solution deposition.

Dissolution chemistry
Many early efforts to solution process chalcogenide materials used hydrazine, mainly due to its
effectiveness as a solvent and ability to yield residue-free films [18–21,26]. Unfortunately, hydra-
zine is also extremely toxic and volatile, limiting the scalability of processing routes that rely on it.
Thus, while hydrazine processing is still used [27,28], a huge amount of effort has been made to
investigatemore industrially friendly options. In recent years, relatively less hazardous solvents like
ethanol [29,30], dimethylformamide (DMF) [30–35], butyldithiocarbamate acid (BDCA)
[14,36–38], dimethylsulfoxide (DMSO) [32–34,39], and even water [33,40,41] have been ex-
plored. Among the various options, a particular spotlight has been placed on amines. Both
alone and in solvent mixtures, amines have proved effective in the processing of chalcogenide
thin films with a range of compositions and structures, offering interesting overlaps between crys-
talline and amorphous systems. In this section, we focus on amines, reviewing recent progress in
understanding the dissolution of bulk chalcogenides and the doors opened by non-chalcogenide
and elemental precursors. We also highlight opportunities for transferable progress between
work on amorphous and crystalline systems.

Dissolution of bulk chalcogenides
Amines have long been used to solution process thin films from bulk chalcogenide glass precur-
sors. Early work has established the viability of solvents like n-propylamine (PA) and
ethylenediamine (EDA; also abbreviated as EN in other work) [12,42] with bulk As2S3 glass as a
precursor, while recent attention has shifted to n-butylamine (BA) [43–45], ethanolamine (ETA)
[25,46–48], and broader glass compositions [43–49]. Notably, initial studies of chalcogenide
glasses in PA and EDA postulated that dissolution proceeds through the formation of solvent-
dependent nanostructures [12,49,50] – ‘clusters’ in the former, shown in Figure 1, and ‘branched
chains’ in the latter – which have recently been structurally characterized by cryoelectron micros-
copy [51]. Pioneering work on the formation of these structures is well summarized by previous
reviews [52], but recent studies have grown our understanding. For As-S glasses in BA, for in-
stance, Slang and colleagues have drawn attention to the importance of atomic bonding disorder
in the bulk precursor, proposing a mechanism in which the solvent preferentially interacts with
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Figure 1. Bulk chalcogenide glasses form nanostructures in amines. (A) Cluster structure proposed for As2S3 in
propylamine (PA). Reprinted from [50], with the permission of AIP Publishing. (B) 3D reconstruction of cluster produced by
cryoelectron microscopy analysis of As2S3 in PA inks. Bar, 3 nm. Adapted, with permission, from [51].
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homopolar S–S bonds to break the glass into clusters. Based on this, they suggest that the
chalcogen content of the glass should influence both the dissolution rate and the size of clusters
in the ink [43].

This argument delves deeper into the specifics of cluster-mediated dissolution than earlier theories
that attribute cluster formation to a simple breaking of the layer-like structure that chalcogenide
glasses tend to display [50,53]. Moreover, that the mechanism is predicated on the presence of
disordered bonding supports observations that amines alone are inadequate to dissolve many
crystalline chalcogenides and thus require solventmixing [54,55], as is discussed shortly. However,
certain complexities in the dissolution of bulk chalcogenide glasses remain to be understood.
Crystalline As-S precursors still form clusters when dissolved in EDA [13] and the attribution of clus-
ter size to homopolar bonding does not explain observations that cluster sizes in BA [56,57], PA
[58], and EDA [13] depend on the concentration of chalcogenide in the ink, even for a fixed chalco-
genide composition. The latter phenomenon has been proposed to relate instead to the equilibrium
concentration of amine salt species that formduring solvent–solute interaction and encapsulate the
clusters [58]. These details point to the lack of an overarching theory to unite key parameters linked
with cluster formation and demonstrate that despite the long history of processing films from
amines and amorphous chalcogenide precursors, fundamental gaps in understanding of the dis-
solution chemistry remain.

These open questions have not prevented progress from being made in broadening amine pro-
cessing to a wider range of bulk chalcogenide precursors. Recent work has used PA, ETA, and
BA to process novel germanium (Ge)-based glass compositions [45,47–49], with Waldmann and
colleagues proposing a cluster structure for germanium antimony sulfide (Ge23Sb7S70) in PA [49].
As Ge-based glasses are increasingly popular due in part to their elimination of toxic As, this ex-
pansion enhances scalability yet again and broadens the range of commercially practical devices
accessible through solution processing. Further gains have been made by the development of
amine-based solvent mixtures. Webber and colleagues first demonstrated that a 1:10 volume
mixture of ethanedithiol (EDT) in EDA dissolves a variety of V2VI3 chalcogenides – binary
compounds of chalcogens and Group V elements [54]. Since then, this mixture has been used
to dissolve additional precursors, including transition metal chalcogenides like copper sulfide
Trends in Chemistry, July 2021, Vol. 3, No. 7 537
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(Cu2S) or copper selenide (Cu2Se) [55,63,72], and broadened to other combinations of amines
and thiols [65,73]. Table 1 shows how the already wide array of bulk chalcogenides processable
in amines is expanded by solvent mixing. Importantly, amine-thiol mixtures are capable of yielding
molecular solutions [54,74], unlike the unary amine inks described previously that contain nano-
structures. Their solvating power has been ascribed to the formation of ionic RS− species in the
mixture [54,55,65], marked by a large increase in ionic conductivity observed on combining the
two solvents [54,65]. In a successful example of the combining of wisdom across chalcogenide
subfields, adaptations to this cosolvent approach have shown that both 1:10 thiol-amine and
methanol-amine mixtures enhance the solubility of Se-rich chalcogenide glasses, which have tra-
ditionally posed more of a dissolution challenge than their S-containing counterparts [68,75].

Non-chalcogenide and elemental precursors
To achieve films with more complex compositions, bulk chalcogenide precursors may be unavail-
able or financially impractical for industrial purposes. Consequently, a main strength of solvent
mixtures with high solvating power has been in enabling the use of non-chalcogenide precursor
compounds. Wang and colleagues showed how BA could be used as a starting material to pro-
cess metal chalcogenide films from metal oxide precursors by reacting it with carbon disulfide
(CS2) to form BDCA [36]. Although not properly a solvent mixture, this represented an early
example of the value of combining amines with a S source to diversify possible precursors.
Later, McCarthy and colleagues demonstrated that crystalline metal sulfide films could be readily
prepared frommetal oxide precursors dissolved in thiol-aminemixtures, with the alkanethiol com-
ponent of the solvent acting as the S source. Certain selenide films were also possible after
adding Se to the metal oxide-based ink [22]. The versatility of precursors that have since been
used with this kind of approach is well captured by previous reviews [74]; besides continued
work with metal oxide precursors [9,63,76], metal chloride precursors have also been widely in-
vestigated in recent years [77–79]. While the introduction of unwanted elements through these
routes offers less direct control of film composition, it can be a highly cost-effective choice for
scalable film fabrication by enabling use of Earth-abundant metal sources.

Recently, elemental precursors have arisen as an exciting and desirable alternative to bulk chal-
cogenide and non-chalcogenide compounds alike. These have the benefit of maintaining the pu-
rity of the deposited chalcogenide, as no new elements are introduced during the process
besides those in the solvent, while also offering greater compositional flexibility. The most readily
soluble elemental chalcogen is S, and Palka and colleagues used its solubility in BA to process
S-rich As-S glass films from a commercial As-S precursor and additional elemental S. Their
Table 1. Bulk chalcogenide precursors tested with common processing amines and amine-based mixturesa

PA BA HA EDA ETA

Unary (no
mixing)

As-S [42];
As-Se* [59];
Ge-Sb-S [49]

As-S [50]; As-Se* [59];
As-S-Se [61]; Ge-Sb-S
[45]

As-S [60]; Ge-Sb-S*
[47]

As-S [50]; As-Se [59] As-S, As-Se [25];
As-S-Se, As-S-Ge
[46]; Ge-Sb-S [47]

EDT Ag-S, Cu-S
[62]

Ag-S, Ag-Se, Cu-S,
Cu-Se, In-S, In-Se,
Sn-S, Sn-Se [65]

Ag-S, Ag-Se, Cu-S,
Cu-Se, In-S, In-Se
Sn-S, Sn-Se [65]

Ag-S [63]; As-X, Bi-X [54]; Cu-S,
Cu-Se, Fe-Se [64]; In-S, In-Se [66];
Sb-X [54]; Sn-S [67]

Propanethiol As-Se* [68] Cu-Se*, In-Se* [69]

Mercaptoethanol As-S, As-Se [70]; Cu-S [71]; Sb-S,
Sb-Se, Sn-S, Zn-S [70]

Methanol As-Se [68]

aColumns correspond to amines, while rows correspond to mixing solvents. An X in the composition denotes that all three chalcogens (S, Se, and Te) have been tested.
Asterisks indicate that the composition is tested in the cited work but does not yield good results.

538 Trends in Chemistry, July 2021, Vol. 3, No. 7



Trends in Chemistry
results from Raman spectroscopy show a structure in As30S70 films processed from As40S60

and elemental S that is remarkably similar to those processed from bulk As30S70 [24]. This
demonstrates an exciting new route to use solution processing to simply alter the composition
of available precursors, rather than having to melt-quench a new glass. Elemental Se and Te,
meanwhile, are soluble in thiol-amine mixtures [23,39,65,73,80,81], and the underlying
mechanisms are being explored. Deshmukh and colleagues recently showed that the nature
of solvated Se species depends on both the choice of amine and thiol and their mixing ratio,
ranging from long-chain polyselenides in BA-ET with low thiol content to monoselenium thiolate
in EDA-ET with excess thiol. This is depicted by the proposed reaction scheme in Figure 2 [73].
These results highlight how, like the cluster-containing inks described in the preceding text, the
structures in inks prepared with elemental precursors depend on a combination of processing
parameters.

Further compositional control – and with it, further complexity – arises with the solubility of ele-
mental metals in thiol-amine mixtures [23,39,65]. This enables fine-tuning of ternary or quaternary
alloys. Zhao and colleagues recently proposed a model for the dissolution of indium (In) in
hexylamine (HA)-EDT, in which the elemental metal is oxidized to In3+ and coordinated with
four S atoms in an exothermic reaction that releases hydrogen (H2) gas. This elemental loss dur-
ing gas release prevents reversal of the reaction on evaporation of the solvent mixture, allowing
the researchers to redissolve the metal thiolate complexes in DMF, a less corrosive solvent, for
deposition [39]. This innovation, illustrated in Figure 3, demonstrates how a deeper understand-
ing of dissolution promotes improvement of the solution process as a whole. Besides allowing
broader material compatibility during film fabrication, the formation of molecular complexes in
thiol-amine mixtures paired with deposition from benign solvents can also be explored to over-
come issues damaging lower layers during iterative spin coating of thick films [45,69].

Despite this progress, lingering gaps in our understanding of elemental chalcogen and metal dis-
solution impede full compositional tailoring with such precursors. For instance, certain elemental
metals like Sb [80] or gallium (Ga) [23] are not readily soluble in thiol-amine mixtures in the ab-
sence of Se. This is in contrast to their soluble compounds like gallium trichloride (GaCl3) [69]
or antimony trioxide (Sb2O3) [22]. As a consequence, a combination of elements and non-
chalcogenide compounds is often required to achieve the most comprehensive toolkit for the
TrendsTrends inin ChemistryChemistry

Figure 2. Proposed reaction scheme
for dissolution of elemental Se
Schemes for Se in monoamine-
monothiol (top) versus diamine-monothio
(bottom) mixtures depict the formation
of polyselenides in the former and
monoselenium thiolates (RSSe–) in the
latter. Reprinted with permission from
[73]. Copyright 2020 American Chemica
Society.
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Figure 3. Opportunities with
elemental metal precursors.
Understanding dissolution mechanisms
for elemental metals in thiol-amines
enables new opportunities in solution
processing. This diagram shows the
formation of metal complexes in
thiol-amines followed by redissolution
in a benign solvent for deposition.
Reprinted with permission from [39].
Copyright 2019 American Chemical
Society.
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tailoring of film composition, which comes at the potential expense of purity. Furthermore, the
thermodynamic limits of solution-based composition alteration have not been fully characterized.
Even in situations where the desired precursors are readily soluble, as in the processing of S-rich
As-S glasses [24], questions remain on the limitations of phases accessible in the final material
and the deposition conditions required to ensure phase homogeneity. Thus, to take full advan-
tage of the flexibility of elemental precursors and fairly compare them with other processing
methods, it is first necessary to better understand how the species present in inks affect film
formation.

Film formation
A variety of deposition methods are used in solution processing of chalcogenide films [29,48,82],
but film formation across these is united by the subsequent thermal and chemical conversion
steps. With the range of complicated species and structures present in inks, described in the pre-
vious section, as-deposited films require at least annealing, if not sulfurization or selenization, to
achieve the desired phase structure. The former refers to heat treatment alone, generally under
inert atmosphere; note that while, in the glass community, ‘annealing’ implies the use of temper-
atures past a specific annealing point, here we use a broader definition of any heat treatment that
allows structural relaxation, residual solvent removal, or both. The latter two treatments, mean-
while, involve heating under the respective chalcogen atmosphere to chemically alter the depos-
itedmaterial. In this section, we review recent work in understanding these two types of treatment
and their effects on film formation, focusing more heavily on annealing as it is ubiquitous among
amorphous and crystalline chalcogenides and more favored for scalability. In particular, we high-
light how the processes that make annealing necessary can also lead to unwanted effects, and
we discuss recent creative work that turns film impurity into opportunity.

Thermal conversion and annealing
Some solution processing routes yield chalcogenide films directly, without the need for chemical
conversion of the as-deposited phase. The most straightforward example of this is found in chal-
cogenide glass films processed from bulk chalcogenide precursors. Here, amorphous chalcogen-
ide films form immediately on deposition, traditionally through spin coating [42,43,50,56,82–85],
although recent work has also focused on other methods, such as electrospray [47,48] or
doctor-blading [29]. Direct formation of an amorphous phase also occurs in the processing of cer-
tain metal chalcogenide films, with annealing required to reach the desired crystal structure. This is
particularly common with metal V2VI3 chalcogenides like Sb2S3 [14,15], although it has also been
540 Trends in Chemistry, July 2021, Vol. 3, No. 7
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observed with broader compositions [63,65,79,86]. While these routes are convenient due to the
lack of sulfurization or selenization steps, the as-deposited phase suffers from low purity and sub-
optimal morphology. Amines, in particular, leave behind carbon, nitrogen, and hydrogen residues
[87] and nanostructures in inks can propagate into the dried material [56]. Thus, even in films
intended to remain glassy, annealing is required to remove residual solvent or precursors and im-
prove the material structure.

Annealing time and temperature play significant roles in film quality for both crystalline and amor-
phous chalcogenides [9,59,61,82,87,88]. Recent work has shown that the structural and optical
properties of chalcogenide glass films are more influenced by annealing temperature than the
amine aliphatic chain length [60]. This is notable given the influence of solvent choice on cluster
formation, although comparisons with diamines have shown certain solvent-dependent optical
properties even after annealing [89]. Importantly, annealing is capable of bringing certain mea-
sures of film quality on a par with those produced by high-purity vacuum techniques. Prince
and colleagues showed that annealing glassy As-S and As-Se films spin coated from ETA at suf-
ficiently high temperature (150°C) increased the refractive index to that of a thermally evaporated
film and the electrical conductivity beyond it [25]. This echoed earlier work that showed such
property improvements to be related to residual solvent removal [87]. Embden and colleagues
also demonstrated that optimal annealing of solution-processed CuSbS2 absorber layers for
solar cells yielded power conversion efficiencies above 1% and on a par with earlier work using
sputtering [9,90]. These findings are critical to making solution processing truly practical for de-
vice applications.

The thermochemical processes that occur during annealing, however, can also bring about un-
wanted effects. Zhao and colleagues showed that hot-plate annealing of Cu(In,Ga)Se2 precursor
films before selenization led to significant Ga loss when metal chlorides were used to prepare the
original thiol-amine ink. They postulated this was due to the formation of GaCl3, whose boiling
point (150°C) was lower than the annealing temperatures used (250–350°C) [69]. Similarly, Strizik
and colleagues observed the formation of voids in PA-processed As3S7 films on annealing at 200
and 300°C, shown in Figure 4, due to the evaporation of H2S gas formed as a consequence of
residual solvent [82,91]. Importantly, both studies were able to combat these film-formation ef-
fects by altering ink preparation. For Zhao and colleagues, non-chloride precursors produced
films with up to 86% higher Ga content [69], while Strizik and colleagues observed that the
addition of tris(8-hydroxyquinolinato)erbium(III) complex (ErQ) eliminated damage during
annealing, as seen in Figure 4 [82]. These results highlight the intimate link between ink preparation
and film formation. Further optimization of post-deposition thermal processing must begin with a
deeper understanding of complexes present in inks to predict thermochemical reactions
in the as-deposited films.

Chemical conversion
A significant drawback to metal chalcogenide processing is that films often require an additional
annealing under chalcogen atmosphere to reach the desired phase purity [23,30,40,69,72,86].
These sulfurization or selenization steps detract from the overall scalability of the process.
While S sources added during ink preparation like thiols [65], thiourea [34], or CS2 [9] have
been sufficient to eliminate the need for sulfurization, selenization remains common to control
film Se content even when depositing from inks with Se sources [23,69,72]. As this is largely to
replace S with Se in films targeting Se-rich final compositions, this once again brings attention
back to ink preparation and the possibility of reducing S contamination by limiting S sources.
The low solubility of Se makes this a tall order [80,81], but the aforementioned case of adopting
thiol-amine processing for chalcogenide glasses may provide some insight. Although Slang and
Trends in Chemistry, July 2021, Vol. 3, No. 7 541
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Figure 4. Interplay of ink preparation and annealing. Defects form in As3S7 films as the annealing temperature
is increased from 125°C to 200°C to 300°C (left side, top to bottom). The introduction of 5 or 10 mol% tris(8-
hydroxyquinolinato)erbium(III) complex (ErQ) precursor, relative to the bulk As3S7 precursor, mitigates the damage (left to
right), demonstrating the relationship between ink preparation and annealing. Bars (red), 250 μm. Reproduced, with
permission, from [82].
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colleagues observed that a thiol-amine mixture dissolved the bulk As-Se precursor, as described
previously, the deposited films showed low optical quality, which they suggested to be related to
S contamination. Replacing the thiol with methanol, however, both dissolved the precursor and
yielded a film with the desired Se content and high optical quality [68]. While amorphous and crys-
talline chalcogenides are subject to different processing challenges, this example demonstrates
how continuous exchange of ideas between the two subfields stands to deepen our understand-
ing of film formation and generate valuable new ideas.

Benefits of non-chalcogenide residues
Even as these routine thermal and chemical treatments attempt to enhance the purity of the depos-
ited chalcogenide phase, it is critical to recognize that not all residues are undesirable.
Nanoparticle- or ion-doped chalcogenide glass films, for instance, exploit controlled impurities
for applications across photonics, but fabricating them often requires laser processing [17,83,85]
or prefabricated quantum dots [92,93]. This detracts from the convenient solution processability
of the glasses themselves. Single-step doping, meanwhile, relies on the dissolution of additional
precursors in the ink to form the dopant in situ, which remains as a ‘residue’ in the film – a simpler,
more scalable alternative. The addition of silver chloride (AgCl) or ErQ to PA-based inks has been
successfully used to solution process Ag2S- or Er

+-doped As-S films, respectively [82,84,94].
These demonstrate the potential of the method but deal with a small selection of dopants relative
to what has been accomplished with other techniques [85,92,93]. This represents an opportunity
for advances in the identification of elemental and non-chalcogenide precursors for metal
542 Trends in Chemistry, July 2021, Vol. 3, No. 7
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Outstanding questions
How do processing parameters interplay
to control the formation of nanoscale
clusters or molecular complexes in inks
prepared with bulk chalcogenide, non-
chalcogenide, or elemental precursors?

What are the thermodynamic limitations of
composition tailoring through elemental
precursors?

What solvent systems are capable of
processing Se-rich compositions with
minimal S contamination?

Can the diversity of precursors explored
to fabricate metal chalcogenide films be
applied to single-step doping of chalco-
genide glass films?

How can impurities imparted during
solution processing be leveraged for
creative device applications?
chalcogenide films, detailed in the preceding text, to be extended to amorphous systems.
Particularly as metal chalcogenide nanocrystals themselves are viable dopants for chalcogenide
glass films [84,92–94], an interesting avenue for future work would be to explore the potential of
the diverse solvent–precursor pairings investigated by the crystalline chalcogenide community to
expand the variety of dopants possible with single-step solution processing of glassy films.

Further opportunities to use the presence of unwanted ink components in as-deposited films in
advantageous ways have focused on solvent residues. Tzadka and colleagues recently demon-
strated a method for direct nanoimprinting of glassy As2Se3 films processed from EDA by
leveraging the plasticizing effect of residual solvent, shown in Figure 5A,B [95]. Around the
same time, Wang and colleagues observed that metal-organic precursors formed during
BDCA processing could act as negative resists during lithography. As shown in Figure 5C, they
used this to pattern the as-deposited film with an electron beam before annealing to form the de-
sired metal chalcogenide phase [38]. A key advantage of studies like these is that they go beyond
simply seeking compositional control of solution-processed chalcogenide films to explore inter-
esting benefits of impurities that arise along the way. Thus, alongside continued work to improve
film formation and post-processing, a promising direction for future study is to consider nontradi-
tional applications of the unique properties imparted by residual solvent or precursors to develop
new processes that leverage the speed and scalability of solution deposition.

Concluding remarks
Growing interest in next-generation applications of chalcogenides in recent years has fortunately
been accompanied by significant advances in scalable solution processing of chalcogenide thin
films. The already vast array of bulk chalcogenides soluble in amines has been augmented by ex-
plorations of amine-based solvent mixtures, and recent successes with elemental precursors
have opened new doors to facile composition tailoring. These not only are paired with informed
TrendsTrends inin ChemistryChemistry

Figure 5. Applications of impurities in as-deposited films for patterning. (A) Schematic of nanoimprinting using
plasticizing effect of residual solvent in deposited film and (B) example antireflective pattern imprinted onto As2Se3 film
Adapted, with permission, from [95]. (C) Example Sb2S3 dot pattern produced by lithography of as-deposited film
Adapted, with permission, from [38].
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thermal processing to produce films on a par with vacuum-based deposition methods, but have
also been leveraged to fabricate more complex doped or nanostructured films. Still, these ad-
vances make it apparent that, whether considering a nanostructured ink for a chalcogenide
glass or a molecular ink for a metal chalcogenide, the reactive nature of the solvent is of
paramount importance. Work remains to fully understand the dissolution mechanisms, whose
chemical nature means that parameters like precursor or solvent choice, solvent mixing ratio,
and precursor concentration directly influence the nature of the solvated species (see
Outstanding questions). These, in turn, determine the processes that occur during film formation,
including annealing-driven reactions that significantly impact the quality of the final material.

To expand the reach of scalable solution processing to new devices on the horizon for chalco-
genide materials, from neuromorphic synapses [1] to wearable thermoelectrics [5,96], future
work should target open questions on these fundamentals of dissolution and film formation.
Understanding the structures present in inks more deeply is essential to enable more rigorous
control of the deposited phase, particularly when seeking to produce Se-rich films or to push
the limits of composition tailoring with elemental precursors. Alongside this, future work should
continue to investigate novel applications of the diverse precursors already characterized and
the interesting impurities that arise in the early stages of film formation. In these endeavors, helpful
insights can be found by combining wisdom on amorphous and crystalline systems, enabling a
more foundational understanding of the solution process as a whole and promoting more rapid
development of chalcogenide film fabrication to keep pace with the ever-evolving applications.
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