
LLM-Prop: Predicting Physical And Electronic
Properties Of Crystalline Solids From Their Text

Descriptions

Andre Niyongabo Rubungo1,5, Craig Arnold2, Barry P. Rand3,4, and
Adji Bousso Dieng1,5,*

1Department of Computer Science, Princeton University
2Department of Mechanical & Aerospace Engineering, Princeton University

3Department of Electrical & Computer Engineering, Princeton University
4Andlinger Center for Energy & the Environment, Princeton University

5Vertaix
*Corresponding author: adji@princeton.edu

October 24, 2023

Abstract

The prediction of crystal properties plays a crucial role in the crystal design
process. Current methods for predicting crystal properties focus on model-
ing crystal structures using graph neural networks (GNNs). Although GNNs
are powerful, accurately modeling the complex interactions between atoms
and molecules within a crystal remains a challenge. Surprisingly, predicting
crystal properties from crystal text descriptions is understudied, despite the
rich information and expressiveness that text data offer. One of the main
reasons is the lack of publicly available data for this task. In this paper, we
develop and make public a benchmark dataset (called TextEdge) that contains
text descriptions of crystal structures with their properties. We then propose
LLM-Prop, a method that leverages the general-purpose learning capabilities
of large language models (LLMs) to predict physical and electronic properties
of crystals from their text descriptions. LLM-Prop outperforms the current
state-of-the-art GNN-based crystal property predictor by about 4% in predicting
band gap, 3% in classifying whether the band gap is direct or indirect, and
66% in predicting unit cell volume. LLM-Prop also outperforms a finetuned
MatBERT, a domain-specific pre-trained BERT model, despite having 3 times
fewer parameters. Our empirical results may highlight the current inability of
GNNs to capture information pertaining to space group symmetry and Wyckoff
sites for accurate crystal property prediction1.

Keywords: text embedding, property prediction, large language models, ma-
terials science, machine learning

1Code and data can be found at https://github.com/vertaix/LLM-Prop.
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1 Introduction

Predicting the properties of crystals is a problem with many useful applications, such
as understanding the behavior and functionality of crystalline solids (Tao et al., 2021;
Parikh et al., 2022). Additionally, the ability to predict crystal properties would
greatly accelerate the discovery and development of new crystals by identifying
candidate materials warranting experimental study (Meredig et al., 2014; Oliynyk
et al., 2016; Raccuglia et al., 2016; Ward et al., 2016; Chen et al., 2019; Choudhary
and DeCost, 2021; Chen and Ong, 2022).

Similarly to proteins (Ioannidis et al., 2019; Strokach et al., 2020; Jiang et al.,
2020; Shen et al., 2021; Wang et al., 2022; Jha et al., 2022; Réau et al., 2023),
crystals are often represented as graphs that model the interactions between nearest
neighbors; atoms in atomic crystals and molecules in molecular crystals (Schütt
et al., 2017; Xie and Grossman, 2018; Chen et al., 2019; Choudhary and DeCost,
2021; Chen and Ong, 2022). For either case, crystal lattice sites are represented
as nodes and the bonds (e.g., ionic or covalent or van der Waals) between them
are represented as edges. Graph neural networks (GNNs) are then typically used
to learn the contextual representation of each node and edge within the crystal
graph to predict its properties. However, GNNs face several challenges to effectively
predict crystal properties: 1) The need to efficiently encode the periodicity inherent
to any crystal which results from the repetitive arrangement of unit cells within a
lattice, a representation distinct from standard molecular graphs (Yan et al., 2022).
2) The complexity of incorporating critical atomic and molecular information such
as bond angles (Choudhary and DeCost, 2021) and crystal symmetry information
such as space groups (Kaba and Ravanbakhsh, 2022). Finally, 3) graphs may
lack expressiveness, which is useful in conveying complex and nuanced crystal
information that is critical for accurate crystal property prediction.

The aforementioned challenges are due to the complexities of crystal graph repre-
sentation. We aim to mitigate these challenges by modeling the crystal structure
from its text description as opposed to its graph representation. Textual data contain
rich information and are very expressive; additionally, incorporating critical/desired
information in text is generally more straightforward compared to graphs. Crystal
representations can for instance be learned by pretraining large language models
(LLMs) on a large body of scientific literature which contains diverse chemical and
structural information about crystal design principles and fundamental properties
(Beltagy et al., 2019; Walker et al., 2021; Huang and Cole, 2022; Gupta et al., 2022).
Then, one can finetune these pretrained LLMs on labeled data to solve specific tasks
such as crystal property prediction (Korolev and Protsenko, 2023; Qu et al., 2023),
crystal recommendation and ranking (Qu et al., 2023), and synthesis action retrieval
(Song et al., 2023). However, these methods also face the challenges of limited
pretraining and downstream data, limited computational resources, and a lack of
efficient strategies to use the available resources.

In this work, we demonstrate effective strategies for the use of LLMs for the accurate
prediction of crystal properties from their text descriptions. Existing approaches
for finetuning LLMs for prediction tasks often either rely on both the encoder and
the decoder or leverage encoder-only large models that tend to have as many
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parameters as encoder-decoder models. In this paper, we make the simple choice
to use a pretrained encoder-decoder model, here T5 (Raffel et al., 2020), entirely
discard its decoder and finetune its encoder for regression and classification tasks.
This has many desiderata: it allows us to cut the network size in half and importantly
enables us to finetune on longer sequences and therefore account for longer-term
dependencies in the crystal descriptions. With this simple yet effective choice, our
approach outperforms not only large encoder-only models such as MatBERT, but
also state-of-the-art GNN-based crystal property predictors such as ALIGNN.

Contributions. We make two main contributions, as summarized below:

• We collect, curate, and make public a benchmark dataset that contains ap-
proximately 144K crystal text descriptions and their properties.

• We propose LLM-Prop, an efficiently finetuned network that allows us to
achieve state-of-the-art performance in crystal property prediction, outper-
forming the current best GNN-based crystal property predictors.

2 Related Work

GNNs for crystal property prediction. One of the main GNN-based crystal property
predictor is CGCNN (Xie and Grossman, 2018). CGCNN uses a convolutional neural
network (CNN) on top of node embeddings from a crystal graph to learn the
interactions between atoms in the crystal and predict crystal properties. Although
CGCNN outperformed classical methods (Jain et al., 2011; De Jong et al., 2015;
Kirklin et al., 2015), it doesn’t incorporate the many symmetries that crystals abide
by. Several follow-up works aimed to incorporate those symmetries. Chen et al.
(2019) proposed MEGNet, an architecture that incorporates crystal periodicity and
only relies on GNNs to represent crystals. MEGNet outperforms CGCNN on various
tasks; however, it still fails to account for critical information such as bond angles.
ALIGNN (Choudhary and DeCost, 2021) was proposed to explicitly incorporate
bond angles in addition to the other information accounted for by MEGNet and
achieves state-of-the-art results compared to previous GNN approaches.

Finetuned LLMs for crystal representation. There have been very recent efforts us-
ing LLMs to learn representations of crystalline materials from their text descriptions.
Qu et al. (2023) proposed an NLP-based crystal discovery framework that uses text
embeddings as crystal representations. Crystal text descriptions were first fed into
the in-domain pretrained LLMs to get embeddings. Then these embeddings were
used to finetune a regression model for crystal property prediction. Finally, candi-
date crystals are recalled and ranked on the basis of the targeted properties. Several
aforementioned in-domain pretrained LLMs were explored and MatBERT gave the
best performance, a similar finding with Song et al. (2023). Even though these
works rely on text to learn crystal representations, they mainly focus on ranking and
recommendation. Property prediction was not thoroughly explored in these works;
for example in (Qu et al., 2023), the text embeddings were frozen and used only
for regression when it comes to property prediction. Another work that is closely
related to ours was proposed by Korolev and Protsenko (2023). Similarly to Qu
et al. (2023), they finetuned MatBERT on text descriptions of crystals, although the
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Structure: NaCl

Robocrystallographer

NaCl … crystallizes in
the cubic Pm̅3m space
group. Na¹⁺ is bonded
… to eight … Cl¹⁻
atoms. All Na–Cl bond
lengths are 3.03 Å. Cl¹⁻
is bonded … to eight …
Na¹⁺ atoms.

NaCl … crystallizes in
the cubic Pm̅3m space
group. Na¹⁺ is bonded
… to eight … Cl¹⁻
atoms. All Na–Cl bond
lengths are 3.03 Å. Cl¹⁻
is bonded … to eight …
Na¹⁺ atoms.

Description

Structure-based: baselines

Text-based: LLM-Prop

NaCl … crystallizes in the cubic Pm̅3m space
group. Na¹⁺ is bonded … to eight … Cl¹⁻ atoms.
All Na–Cl bond lengths are 3.03 Å. Cl¹⁻ is
bonded … to eight … Na¹⁺ atoms.

Preprocessing

[CLS] NaCl … crystallizes cubic Pm̅3m space
group. Na¹⁺ bonded … eight … Cl¹⁻ atoms. All
Na–Cl bond lengths [NUM]. Cl¹⁻ bonded … 
 eight … Na¹⁺ atoms.

T5 Encoder

[CLS] NaCl … crystallizes cubic Pm̅3m space
group. Na¹⁺ bonded … eight … Cl¹⁻ atoms. All
Na–Cl bond lengths [NUM]. Cl¹⁻ bonded
…  eight … Na¹⁺ atoms.

Predictor:
Regression/Classification

Figure 1: LLM-Prop architecture. On the left most of the figure, we show how
we get the description from the crystal structure using Robocrystallographer. The
middle part shows the comparison between our approach (text-based) and baselines
(structure-based). The yellow colored information is related to Sodium (Na), green
colored information is related to Chlorine (Cl), and blue colored information is
related to additional information that text data provide such as space groups and
bond distances. On the right most part of the figure, we then show our proposed
LLM-Prop architecture (see 3.2 for more details).

focus was on classification tasks. Our work focuses on designing an efficient pipeline
for the accurate prediction of crystal properties from text, for both regression and
classification tasks. Our approach doesn’t rely on in-domain pretrained LLMs, has
significantly fewer parameters, and can even play a crucial role in designing a
more robust ranking and recommendation system for crystals because getting text
embeddings from a good property predictor can improve performance on those
tasks. Furthermore, we perform extensive and carefully-designed experiments,
comparing performance against the strongest GNN-based approaches to shed light
on the benefits of using text and highlight the shortcomings of current GNN-based
models for crystals. Finally, we release to the public the curated dataset we used as a
benchmark, called TextEdge, to accelerate NLP for materials science research.

3 LLM-Prop

3.1 Data Collection and Analysis

We collected the dataset used in this work from the Materials Project database (Jain
et al., 2013) using the Materials Project free API2 as of November 1, 2022. We
focus on crystals with physical and electronic properties (band structures), which
contain properties such as band gap, crystal volume, and an indicator of whether
the band gap is direct or indirect. These properties have not yet been explored in
other text-based methods and are usually hard to predict for GNN-based methods.

2https://materialsproject.org/api
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Table 1: Examples from the collected benchmark dataset.

ID Formula Structure Description Band gap (eV) Volume (Å³/cell) Is-gap-direct?

mp-22851 NaCl
NaCl is Tetraauricupride structured and crystallizes
in the cubic Pm3m space group. Na1+ is bonded in
a body-centered cubic geometry to eight equivalent
Cl1- atoms. All Na-Cl bond lengths are 3.03 Å. Cl1-

is bonded in a body-centered cubic geometry to
eight equivalent Na1+ atoms.

3.97 42.96 No

mp-30274 AcBrO
AcOBr is Matlockite structured and crystallizes
in the tetragonal P4/nmm space group. Ac3+ is
bonded in a 4-coordinate geometry to four equiva-
lent O2- and five equivalent Br1- atoms. All Ac–O
bond lengths are 2.49 Å. There are four shorter
(3.40 Å) and one longer (3.54 Å) Ac–Br bond
length. O2- is bonded to four equivalent Ac3+ atoms
to form a mixture of corner and edge-sharing OAc4
tetrahedra. Br1- is bonded in a 5-coordinate geom-
etry to five equivalent Ac3+ atoms.

4.24 140.14 Yes

mp-570693 SbSe3N2Cl7
SbCl6N2Se3Cl is Indium-derived structured and
crystallizes in the triclinic P1 space group. The
structure is zero-dimensional and consists of two
N2Se3Cl clusters and two SbCl6 clusters. In one
of the N2Se3Cl clusters, N2- is bonded in a bent
120 degrees geometry to one Se2+ and one Se3+

atom. The N–Se bond length is 1.75 Å. The N–Se
bond length is 1.75 Å. N3- is bonded in a bent 120
degrees geometry to one Se2+ and one Se3+ atom.
The N–Se bond length is 1.74 Å...

1.70 787.76 No

The data contains 144, 931 crystals which we split into 125, 098 crystals for training,
9,945 as a validation set, and 9,888 as a test set. For each crystal, we collect its
ID, structural information, band gap, volume, and whether its band gap is direct
or indirect. We extracted the crystal text descriptions using Robocrystallographer
(Ganose and Jain, 2019) (see Table 1 for examples).

3.2 LLM-Prop Architecture

3.2.1 T5

T5 (Raffel et al., 2020) was the first unified language model that converts all text-
based language problems into a text-to-text problem to perform both generative and
predictive tasks. This framework is important for adapting and finetuning T5 on
many tasks, and enables efficient multitask finetuning. Raffel et al. (2020) carefully
compared different architectures, pretraining objectives, unlabeled datasets, transfer
approaches, and more on dozens of natural language tasks and then combined the
best-performing approaches in each comparison to pretrain T5. For instance, while
MatBERT, a BERT-based model, was pretrained using a masked language model
(MLM) objective (Devlin et al., 2018), T5 uses a span-masking objective (Joshi
et al., 2020) as it was shown to outperform MLM objective in terms of predictive
power and speed. These considerations motivate our choice to use T5 as our main
pretrained model.

3.2.2 Adapting T5 for Predictive Tasks

Transforming each task to text-to-text format requires T5 to use its decoder part
to generate the output. While the decoder is necessary for generative and many
downstream tasks, it adds unnecessary memory, time complexity, and work overhead
when adapted for predictive tasks. Furthermore, Raffel et al. (2020) argued that
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the text-to-text format does not work well on regression tasks where the model is
asked to generate the actual numerical value as the target instead of predicting the
entire probability distribution. Raffel et al. (2020) resorted to only predicting the
range to which a given value to be predicted belonged to instead of performing full
regression withg T5.

How can we leverage T5 for highly accurate performance on predictive tasks, espe-
cially regression tasks? We propose LLM-Prop as an approach. LLM-Prop leverages
T5 by directly adding a linear layer on top of its encoder for regression tasks. This
linear layer can be composed with a sigmoid or softmax activation for classification
tasks. Relying only on the T5 encoder reduces the total number of parameters by
half which allows us to train on longer sequences and therefore incorporate more
crystal information to improve predictive performance.

3.2.3 Input Processing

Removing stopwords. We removed stopwords from the text descriptions as this
preprocessing step has been shown to improve performance on predictive tasks (Di-
eng et al., 2020; Niyongabo et al., 2020). We processed all publicly available English
stopwords 3 and excluded them from the crystal text descriptions, except for digits
and certain signs that may carry important information for crystal representation
such as bond distances and angles.

Replacing bond distance with a [NUM] token and bond angle with an [ANG]
token. Several works have shown that LLMs struggle to resolve contextual numerical
information required for general common-sense reasoning (Wallace et al., 2019;
Zhang et al., 2020; Geva et al., 2020; Thawani et al., 2021). For example, Zhang
et al. (2020) replaced numbers in the training data with their scientific notation
using the [EXP] token (i.e., 314.1 with 3141[EXP]2) to train a new BERT model
which outperforms the original BERT on tasks that require numerical reasoning skills
such as question answering. In our case, numbers not only add reasoning complexity
but also increase the input sequence tokens since they are generally tokenized on
a digit basis. We replace all bond distances and bond angles in the crystal text
descriptions along with their units with [NUM] and [ANG] tokens, respectively.
Those tokens are then added to the vocabulary as new tokens (i.e., we replace 3.03
Å with [NUM] and 120 degrees or 120° with [ANG]). While we are aware that this
might also limit LLM-Prop to learn from the information related to bond distances
and angles between atoms and molecules in the crystal structure, our results show
that compressing the description as described—representing bond distances and
angles with the same two special tokens described above—enables LLM-Prop to see
more context in the text and achieve better performance.

Prepending a [CLS] token to the input. Devlin et al. (2018) showed that prepend-
ing a [CLS] token to every input, updating the embedding of that token together
with the input tokens, and then using it for prediction improves predictive perfor-
mance on downstream tasks. We used this same preprocessing step on T5, adding a
[CLS] token in front of every input and also in the vocabulary, and then learning its

3https://github.com/igorbrigadir/stopwords
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representation jointly with the rest of the model. We used the embedding of the
[CLS] token as the input to the linear layer for prediction.

3.2.4 Label Scaling

For regression tasks, we train LLM-Prop on normalized targets using different
label normalization techniques: z-score normalization, min-max normalization and
log normalization. Then we denormalize the outputs to calculate the prediction
errors on the actual values. Suppose that we have N crystals X1, . . . , XN and their
corresponding properties Y1, . . . , YN as a training set. Here X i denotes the text
description of the ith crystal. Denote by µ and σ the mean and standard deviation
over all targets in the training set, respectively. Denote by Ymin and Ymax the
minimum and the maximum target value in the training data, respectively. The
three normalization techniques we explored normalize a given target value Yi as
follows:

Ŷi(z-score) =
Yi −µ
σ

, Ŷi(min-max) =
Yi − Ymin

Ymax − Ymin
, Ŷi(log-norm) = log Yi + 1.

4 Experiments

We compare LLM-Prop with four baselines: three GNN-based models—CGCNN (Xie
and Grossman, 2018), MEGNet (Chen et al., 2019), and ALIGNN (Choudhary and
DeCost, 2021)—and one text-based model, MatBERT (Walker et al., 2021). The
GNN-based methods are also trained and evaluated on the same benchmark dataset
using the same splits to ensure a fair comparison. Note we do not include the results
reported in the original articles since the dataset used was collected from an old
version of the Materials Project, the 2018 version, and only contains about 70k
crystals. We train all models using NVIDIA RTX A6000 GPUs. We next describe how
we set up the experiments for all the baselines and for LLM-Prop.

4.1 Baselines

CGCNN. We directly use the publicly available code4 and the same experimental
configurations as reported in the original paper to train a CGCNN from scratch and
evaluate it on our benchmark dataset.

MEGNet. We train MEGNet from scratch and evaluate it on our benchmark dataset
following the same implementation details and configurations described in the origi-
nal article using the publicly available code released by the authors5. Unfortunately,
for MEGNet, we could not find the implementation details on classification tasks,
thus we only compared against it on regression tasks.

ALIGNN. Similarly to other baselines, we follow the original implementation details
of ALIGNN released in the paper using the publicly available code from the authors6

to train and evaluate it on our benchmark dataset.
4https://github.com/txie-93/cgcnn
5https://github.com/materialsvirtuallab/megnet
6https://github.com/usnistgov/alignn
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MatBERT. We finetune MatBERT on our benchmark dataset using its original tok-
enizer. We initially preprocessed the input text descriptions of MatBERT as described
in 3.2. However, these preprocessing steps led to worse performance for MatBERT.
The possible reason might be that since MatBERT can process only 512 tokens as
input, the compressed information in 512 tokens that the preprocessing step gives,
does not provide enough context for MatBERT. We therefore finetuned MatBERT
with a batch size of 64 crystal descriptions, a learning rate of 5e− 5, and a dropout
rate of 0.5 for 200 epochs using the Adam optimizer with a onecycle learning rate
scheduler (Smith and Topin, 2019) for all the experiments.

4.2 LLM-Prop

For LLM-Prop, we finetune the original T5 encoder directly on our benchmark dataset
without further pretraining it on domain-specific data. We first train the original T5
tokenizer on the benchmark data with the vocabulary size of 32k, then preprocess the
data as described in 3.2. For regression tasks, we finetune LLM-Prop on normalized
property values and denormalize the predicted values to calculate the error on the
original values. Unless otherwise mentioned, we use z-score normalization when
finetuning both LLM-Prop and MatBERT. Unless otherwise mentioned, we finetune
LLM-Prop on 888 input tokens, using a batch size of 64, a learning rate of 1e− 3,
and a dropout rate of 0.2 for 200 epochs using the Adam optimizer with a onecycle
learning rate scheduler. For all models, we save the checkpoint of each epoch and
evaluate on the test set with the checkpoint that gives the best performance on the
validation set.

For regression tasks, we train both MatBERT and LLM-Prop with the mean absolute
error (MAE) loss and evaluate them in terms of MAE error while the GNN-based
models are trained with root mean square error (RMSE) loss and evaluated with
the MAE error. For classification, we train them with binary cross entropy (BCE)
loss and evaluate with the area under the ROC curve (AUC).

5 Discussion

5.1 Main results

LLM-Prop vs GNN-based models. We find that LLM-Prop outperforms all GNN-
based baselines on both regression and classification tasks. For band gap prediction,
LLM-Prop outperforms the best-performing baseline (ALIGNN) on both validation
and test sets by approximately 8% and 4% improvements, respectively (see Table
2). For volume prediction, LLM-Prop also improves over the best-performing base-
line (ALIGNN) on both validation and test sets by approximately 67% and 66%,
respectively (see Table 3). The possible reason for this improvement might be that
LLM-Prop can easily access the most important information for volume prediction,
e.g. space group information, from the text descriptions compared to GNNs. This
insight encourages two things: (1) the development of more text-based methods
for crystal property prediction and the creation of high-quality text datasets needed
for crystalline solids and (2) the development of new graph-based architectures
that can incorporate more information, such as space group and Wyckoff sites. For
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Table 2: Performance (MAE) comparison with the baselines on band gap prediction.

Model #Parameters
Band gap (eV)

Validation set ↓ Test set ↓

Structure-based models
CGCNN (Xie and Grossman, 2018) - 0.301 0.293
MEGNet (Chen et al., 2019) - 0.300 0.304
ALIGNN (Choudhary and DeCost, 2021) - 0.249 0.250

Text-based models
MatBERT (zero-shot)

109.5M
1.325 1.048

MatBERT 0.244 0.249
LLM-Prop (zero-shot-512 tokens)

37M

1.022 1.070
LLM-Prop (512 tokens) 0.238 0.249
LLM-Prop (zero-shot) 1.117 1.031
LLM-Prop 0.229 0.241

Table 3: Performance (MAE) comparison with the baselines on volume prediction.

Model #Parameters
Volume (Å³/cell)

Validation set ↓ Test set ↓

Structure-based models
CGCNN - 188.834 188.368
MEGNet - 297.948 303.187
ALIGNN - 129.580 126.486

Text-based models
MatBERT (zero-shot)

109.5M
483.089 482.578

MatBERT 49.761 53.282
LLM-Prop (zero-shot-512 tokens)

37M

483.009 485.378
LLM-Prop (512 tokens) 49.063 53.880
LLM-Prop (zero-shot) 482.863 485.396
LLM-Prop 42.259 44.553

predicting whether the band gap is direct or indirect, LLM-Prop also outperforms
the best-performing baseline (ALIGNN) on the validation set with an approximate
5% improvement and improves upon the best-performing baseline on the test set
(CGCNN) by 3% (see Table 5). Interestingly, finetuning LLM-Prop with just 512 to-
kens as an input sequence length also outperforms all GNN-based baselines, despite
not being able to account for enough context from the text descriptions (see Table
2, 3, and 5). Unfortunately, LLM-Prop is not able to get better performance when
we do zero-shot predictions since T5 was not explicitly trained on in-domain data.
However, the finetuned LLM-Prop (LLM-Prop-transfer) on band gap exhibits strong
transfer learning ability compared to other models when transferred to volume
prediction and vice-versa (see Table 4).

LLM-Prop vs MatBERT. For fair comparison, we first consider LLM-Prop and Mat-
BERT when they are trained on the same sequence length (512 tokens). LLM-Prop

9



Table 4: Transfer learning performance comparison.

Model
Volume to Band gap (eV) Band gap to Volume(Å³/cell)

Validation set ↓ Test set ↓ Validation set ↓ Test set ↓

Structure-based models
CGCNN (transfer) 0.300 0.295 187.473 182.997
MEGNet (transfer) 1.461 1.472 190.013 195.664
ALIGNN (transfer) 0.321 0.322 137.471 136.164

Text-based models
MatBERT (zero-shot) 1.175 1.191 412.891 422.487
MatBERT (transfer) 0.259 0.266 50.530 54.289
LLM-Prop (zero-shot) 1.288 1.103 482.922 485.583
LLM-Prop (transfer) 0.236 0.244 47.837 50.753

Table 5: LLM-Prop performance (AUC ROC score) comparison with baselines on
classifying whether the band gap value is direct or indirect.

Model #Parameters
Is-gap-direct

Validation set ↑ Test set ↑

Structure-based models
CGCNN - 0.797 0.830
ALIGNN - 0.814 0.678

Text-based models
MatBERT (zero-shot)

109.5M
0.500 0.535

MatBERT 0.722 0.728
LLM-Prop (zero-shot-512 tokens)

37M

0.494 0.484
LLM-Prop (512 tokens) 0.839 0.836
LLM-Prop (zero-shot) 0.503 0.500
LLM-Prop 0.856 0.857

yields better or comparable performance, including for zero-shot prediction, on all
tasks (2, 3, and 5). When we finetune LLM-Prop on the maximum input sequence
length it can process (888 tokens), it outperforms MatBERT by a large margin
despite having 3× fewer hyperparameters. LLM-Prop improves upon MatBERT by
approximately 6% and 3% on band gap prediction on the validation and test sets,
respectively (see Table 2), 15% and 16% on volume prediction (see Table 3), and
19% and 18% on predicting whether the band gap is direct or indirect (see Table 5).
Although MatBERT was pretrained on in-domain data, LLM-Prop shows stronger
transfer learning ability when transferring between models finetuned on volume
and band gap (see Table 4). The MatBERT results show that naively finetuning
pretrained LLMs (even though they have been pretrained on domain specific data)
is insufficient for accurate crystal property prediction and additional strategies such
as those used in this paper are needed to achieve better performance.

How much data does LLM-Prop need to achieve SOTA results? We finetune
LLM-Prop with randomly sampled data from the training set with the data size
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Figure 2: Training data size needed by LLM-Prop to achieve state-of-the-art (SOTA)
results on predicting different properties. For instance, LLM-Prop achieves SOTA
results on prediciting band gap and volume with just about 90k training data
(log1090k ≈ 4.95 on the figure) that corresponds to 35k fewer data than what
baselines are trained on. We used log of the training data size on the x-axis for
clarity. The performance of each model is calculated on validation set.

Table 6: The contribution of each preprocessing strategy on LLM-Prop performance.
We compare the baseline (when the input crystal descriptions and the targets are
not touched, and with default T5 tokenizer) and to when all strategies are combined
together.

Model Band gap ↓ Volume ↓ Is-gap-direct ↑

LLM-Prop (baseline) 0.256 69.352 0.796
+ modified tokenizer 0.247 78.632 0.785
+ label scaling 0.242 44.515 N/A
+ [CLS] token 0.231 39.520 0.842
+ [NUM] token 0.251 86.090 0.793
+ [ANG] token 0.242 64.965 0.810
- stopwords 0.252 56.593 0.779

LLM-Prop+all 0.229 42.259 0.857

ranging from 5k to 90k and compare its performance with the baselines and the
LLM-Prop model trained on the full data. The results in Figure 2 show that LLM-Prop
can achieve SOTA results on predicting band gap and volume with just about 90k
training data points (log1090k ≈ 4.95 on the figure) corresponding to 35k fewer
data points compared to what baselines are trained on. Surprisingly, for volume
prediction, LLM-Prop can outperform all GNN-based baselines with just 30k training
data points (log1030k ≈ 4.48 on the figure) corresponding to about 95k fewer data
points than what GNN-based baselines are trained on. These results highlight the
efficiency and capabilities of LLM-Prop on predicting the properties of crystalline
solids compared to the baselines.

5.2 Ablation studies

How does each LLM-Prop design choice improve its performance? Table 6 shows
how each technique we use to make LLM-Prop a state-of-the-art crystal property
predictor contributes to its performance. We first naively finetune a T5 encoder
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Figure 3: LLM-Prop performance per (a) label scaling strategy and (b) input
sequence length. For the band gap and volume, the lower the better. While for the
Is-gap-direct, the higher the better. The performance of each model is calculated on
validation set.

with its original tokenizer and without preprocessing the input (LLM-Prop-baseline)
and then add to it each strategy separately. We also compare the performance
of each strategy to when all strategies are combined together to make LLM-Prop
(LLM-Prop+all). Overall, LLM-Prop+all provides the best results except on vol-
ume prediction where it shows comparable performance with the LLM-Prop+[CLS]
version. Among all strategies, adding the [CLS] token for pooling seems to give
the best improvement on all property prediction tasks. Replacing bond distances
with the [NUM] token tends to slightly harm the performance, especially on vol-
ume prediction, compared to replacing bond angles with [ANG]. Label scaling
significantly improves performance on both band gap and volume prediction while
removing stopwords slightly improves the performance on band gap and volume
prediction, but slightly harms the performance on predicting whether the band gap
is direct or indirect. The modified tokenizer slightly improves the performance of
LLM-Prop on band gap prediction but harms the performance on predicting other
properties.

How does LLM-Prop perform with respect to the label scaling strategy? We
also analyze how each label scaling technique impacts performance on regression
tasks. The results in Figure 3(a) show that when predicting band gap the perfor-
mance difference among label normalization strategies is not significant while for
volume prediction, z-score normalization (z_norm) significantly outperforms other
normalization schemes.

How does LLM-Prop perform with respect to the number of input tokens? Figure
3(b) shows the performance of LLM-Prop as a function of the input sequence length.
The results show that there is a clear correlation between performance and input
sequence length. Accounting for longer sequences tends to improve performance.
Therefore, by default, LLM-Prop is set to process up to 888 input tokens which
is the maximum length that could be processed by the NVIDIA RTX A6000 GPUs
that we used for training. And, as the results show, we believe that accounting for
longer input sequence length will yield even better performance on crystal property
prediction.
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6 Conclusion

We introduced LLM-Prop, a carefully finetuned network derived from T5 for crystal
property prediction. We showed, through an extensive set of experiments, that
LLM-Prop achieves superior performance in predicting the physical and electronic
properties of crystalline solids, outperforming the current state-of-the-art and ubiq-
uitously used GNN-based architectures such as ALIGNN by a large margin on certain
tasks. Our results highlight the great potential that text-based methods have in
materials science and we release a benchmark text data, TextEdge, composed of text
descriptions of crystals and their properties to encourage research in this nascent
area.
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