Femtosecond laser induced damage threshold incubation and oxidation in AS$_2$S$_3$ and AS$_2$Se$_3$ thin films

Kelly T. Paulaa, Nikita S. Duttab, Juliana M.P. Almeidac, L.K. Nolascoa,d, Marcelo. B. Andradee, Craig B. Arnoldb, Cleber R. Mendonçaa,c

a São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos – SP, Brazil
b Department of Mechanical and Aerospace Engineering, Princeton Institute for the Science and Technology of Materials, Princeton University, NJ 08544, USA
c Federal University of São Carlos, Department of Materials Engineering, (DEMa/UFSCar), 13565-905 São Carlos – SP, Brazil
d Department of Materials Engineering, School of Engineering of São Carlos, University of São Paulo, 13563-120 São Carlos – SP, Brazil
e Physics Department, Federal University of Ouro Preto, 35400-000 Ouro Preto – MG, Brazil

ABSTRACT

Laser surface structuring has emerged as a versatile technology for precise and localized material processing. When dealing with femtosecond lasers, thermal effects and collateral damage are reduced due to nonlinear light-matter interaction, improving the processing. This study explores the fabrication of microstructures using femtosecond pulses on thin films of chalcogenide glasses, which can be used for photonics applications, such as waveguides, fiber lasers, and photonic crystals. Moreover, the photoinduced changes in chalcogenide glasses have opened up new possibilities in optoelectronics, data storage, and other applications. Femtosecond laser machining of amorphous thin films of AS$_2$S$_3$ and AS$_2$Se$_3$ using femtosecond laser pulses is investigated through various microscopy techniques and spectroscopy tools, focusing on the impact of incubation effects and controlled photo-oxidation. This research contributes to a deeper understanding of the interaction of ultrafast pulses with chalcogenide glasses, promoting further advancements in photonics and optoelectronic applications.

1. Introduction

Femtosecond laser micromachining, in particular, is favored for its ability to process various materials, such as glasses [19–27], polymers [28–32], metals [33–35], and semiconductors [36–38], with reduced thermal effects and collateral damage that can be controlled by choosing the irradiance parameters, also allowing spatial localization of the processing due to the nonlinear light-matter interactions. Furthermore, it is an alternative to standard lithographic processes, producing complex structures in a single step, with high processing speed in ambient conditions, without the need for clean rooms and photomasks.

Femtosecond laser micromachining depends largely on the process parameters, including pulse duration, wavelength, laser fluence, and number of incident laser pulses. In particular, incubation effects that arise in multipulse and high repetition rate processing scenarios have generated great interest in the damage threshold fluence, the minimum fluence required to cause optical damage [39,40]. Thus, understanding changes in the material upon fs-laser processing is of great importance for optimizing the microfabrication process, enhancing its efficiency when ultrafast lasers and high repetition rates are used.

In the context of fabricating functional microstructures using femtosecond pulses, chalcogenide glasses are excellent candidates given their prospects for photonics applications, as they present desirable properties, such as low phonon energies, low optical losses, high linear and nonlinear refractive indexes, and a broad region of infrared transparency [41–45]. These properties, combined with their low melting temperatures, make them suitable for optics, photonics, and electronics applications [46–48]. These glasses exhibit unique characteristics stemming from their different chemical compositions. Arsenic trisulfide, known for its wider bandgap and transparency in the infrared region, contrasts with arsenic triselenide, which possesses a narrower bandgap, broader transparency extending into the visible and near-infrared regions, and generally higher refractive index. Understanding these fundamental differences is crucial for tailoring the optical and thermal

* Corresponding author.
E-mail address: crmendon@ifsc.usp.br (C.R. Mendonça).

https://doi.org/10.1016/j.apsusc.2024.159449
Received 28 November 2023; Received in revised form 11 January 2024; Accepted 18 January 2024
Available online 20 January 2024
0169-4332/© 2024 Elsevier B.V. All rights reserved.
properties of these materials, informing their applications in areas such as infrared optics, fiber optics, and beyond. Many photonic devices based on chalcogenide glasses have been successfully fabricated by femtosecond laser micromachining, including optical waveguides \[49,50\], infrared fiber lasers \[51\], nonlinear optical switches \[52\], and photonic crystals \[53\].

Photoinduced changes in chalcogenide glasses exhibit extraordinary characteristics that have prompted further research in optoelectronics \[54,55\]. Recently, there has been a significant increase in exploring a wider range of applications for chalcogenide glasses, including their use in photoresists \[56\], optical memories \[57\], optoelectronic displays \[58\], and reconfigurable optical circuits \[59\]. The transition between disordered amorphous and ordered crystalline states, which can be achieved through local heating, is accompanied by electrical resistivity and optical reflectivity changes \[60\]. Additionally, when exposed to light, chalcogenide glasses exhibit structural and physicochemical changes, leading to photocrystallization, photopolymerization, photoexpansion, and photodissociation \[61,62\]. These changes can result in a distinct contrast between the two solid states, proving beneficial for data storage applications \[63\].

In this study, we investigated the microfabrication process of amorphous thin films of arsenic sulfide (As$_2$S$_3$) and arsenic selenide (As$_2$Se$_3$) with femtosecond laser pulses at 1030 nm, using different microscopy techniques to assess incubation effects. Moreover, controlled crystallization was achieved depending on the number of femtosecond pulses, and it was evaluated through scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and micro-Raman spectroscopy.

2. Experimental

Chalcogenide solutions were prepared through the dissolution of arsenic trisulfide or arsenic selenide (alfa aesar 99.999 %) in propylamine – C$_3$H$_7$N (Sigma-Aldrich > 99 %) – with a concentration of 133 g/L in a nitrogen-atmosphere glovebox. Thin films of As$_2$S$_3$ and As$_2$Se$_3$ were prepared from their respective solutions using spin-coating, typically carried out at 2000 rpm for 10—20 s onto glass coverlip as substrates. For solvent removal, the thin films were vacuum baked at 60 °C for 1 h and then at 110 °C for 7 h, resulting in films with 500 nm of thickness.

Micromachining was performed on the samples using 216-fs pulses from a diode-pumped Yb:KGW laser system, operating at a central wavelength of 1030 nm, with repetition rate in the range of 20 Hz – 200 kHz and scanning speed of 12.5 and 25 μm/s. The laser beam was focused by a 40x microscope objective (numerical aperture of 0.65) at the surface of As$_2$S$_3$ and As$_2$Se$_3$ films. Samples were placed in an x-y-z translation stage that allowed motion with constant speed in the plane perpendicular to the laser propagation. Micromachining was monitored in real-time with the aid of a CCD camera and backlight illumination, and was carried out in ambient air, under atmospheric pressure, and at room temperature.

Laser micromachining was performed using distinct pulse energies (E$_p$) and different numbers of pulses per spot (N), varying from 1 to ~ 20,000. N was varied by changing the laser repetition rate and scanning speed of the translational stage. For each N, groups of lines 500-μm long, separated by 10 μm, were produced to evaluate the influence of pulse energy on the line width.

The microstructures were characterized by optical microscopy using a Zeiss LSM-700 microscope, scanning electron microscopy (SEM) using...
an FEI Inspect-F50 microscope, and also by atomic force microscopy (AFM) using a Nanosurf easyScan 2® microscope. Optical properties were analyzed by UV–Vis spectroscopy using a Shimadzu UV-1800 spectrophotometer. Raman spectra of the samples were acquired using a LabRAM HR Evolution confocal micro-Raman system with a liquid nitrogen-cooled CCD detector. Chemical analysis was conducted using Energy-dispersive X-ray spectroscopy (EDX) with a Quantax EDX Bruker system, which was coupled to the optical microscope (TM3000-Hitachi).

3. Results and discussion

Fig. 1 presents optical images of ablated lines using N = 10 and pulse energies ranging from 22 to 95 nJ (Fig. 1a) and from 6 to 33 nJ (Fig. 1c), respectively, for As$_2$S$_3$ and As$_2$Se$_3$ samples. From the optical microscopy images, it was possible to measure the half line width (r) for each group of lines, which increases with the energy. The experimental data, which presents the square of r as a function of pulse energy (E_0), are shown in Fig. 1b and 1d, respectively, for As$_2$S$_3$ and As$_2$Se$_3$ samples. This particular set of data (N = 10), r ranges from ~0.7 to 1.3 μm and from ~0.6 to 1.2 μm, respectively, for lines microstructured in As$_2$S$_3$ and As$_2$Se$_3$. In a larger set of experiments performed on both As$_2$S$_3$ and As$_2$Se$_3$ samples, while changing the number of pulses, the average radius varied from ~0.5 to 1.6 μm and from ~0.5 to 1.3 μm, respectively.

As the laser beam presents a Gaussian spatial distribution, it was possible to determine the threshold energy (E_{th}) for damage, applying the zero damage method [64] according to

$$r^2 = \frac{w_0^2}{2} \ln \left(\frac{E}{E_{th}} \right)$$ \hspace{1cm} (1)

in which w_0 is the beam waist radius at the focus. By fitting the data displayed in Fig. 1b and 1d (solid lines), we have determined threshold energies of 12.8 nJ and 3.7 nJ, respectively, for As$_2$S$_3$ and As$_2$Se$_3$ ablated lines, when using N = 10. Also from the fittings, we determined the beam radius at the focus to be w$_0$ = 1.2 μm. With such values and using E_0 previously determined, we calculated the threshold laser fluence (F_{th}), whose values vary from 0.30 to 0.66 J/cm2 for As$_2$S$_3$ and from 0.14 to 0.24 J/cm2 for As$_2$Se$_3$.

We have observed a decrease in the threshold fluence with the number of pulses. This behavior is well known and commonly explained in terms of the incubation effect, being investigated in a wide range of materials, including semiconductors, metals, dielectrics, ceramics, and polymers [65–67]. Different models have been proposed to describe such an effect. Even though it is widely used for different materials, the probabilistic model of defect accumulation [39] does not provide the saturation of threshold fluence observed in Fig. 2. For this reason, the model that best describes our experimental results is the exponential defect accumulation model [68]. The model proposes that the probability of creating defects increases with the number of pulses, thus decreasing the damage threshold fluence. In this way, a constant value of the threshold fluence for a high number of pulses is established when the saturation of the defects is reached. In this model, the threshold fluence after irradiation of N pulses ($F_{th,N}$), can be related to the single pulse threshold fluence ($F_{th,1}$) and the infinite pulse threshold fluence ($F_{th,\infty}$) following the expression,

$$F_{th,N} = (F_{th,1} - F_{th,\infty}) e^{-\frac{N}{N_{inc}}} + F_{th,\infty}$$ \hspace{1cm} (4)

where k is the incubation parameter.

The incubation curves obtained from fs-laser micromachining for As$_2$S$_3$ and As$_2$Se$_3$ are shown in Fig. 2. It is possible to observe, for both cases, a decrease in the threshold fluence in the region from ~1 up to 100 pulses. This decrease in the threshold fluence ranges from 0.67 J/cm2 to 0.32 J/cm2 for As$_2$S$_3$, and from 0.24 J/cm2 to 0.13 J/cm2 for As$_2$Se$_3$, which then reaches saturation with an increasing number of pulses. By fitting the data, the incubation parameter was determined to be (0.06 ± 0.01) for As$_2$S$_3$ and (0.05 ± 0.01) for As$_2$Se$_3$, which is comparable to the values found for GaN and CVD diamond of (0.02 ± 0.01) and (0.14 ± 0.03) at 1030 nm, respectively [69]. Much like the GaN and diamond cases, the gradual change in the fluence threshold with the number of pulses suggests a low incubation parameter, indicating that a substantial quantity of pulses is necessary to induce damage to the material.

The disparity in the damage threshold fluence for the single pulse case seen in Fig. 2(a–b) for the As$_2$S$_3$ and As$_2$Se$_3$ samples can be explained by the different nonlinear ionization mechanisms present during fs-laser micromachining. Since the energy gap (E_g) is 2.562 eV for As$_2$S$_3$ and $E_g = 1.928$ eV for As$_2$Se$_3$ [70,71], laser excitation at 1030 nm (1.2 eV) results in 3-photon absorption and 2-photon absorption, respectively, confirmed through the determination of the Keldysh parameter, which yielded values greater than 1.5 for both samples [72].

Nevertheless, one can extrapolate the two and three-photon cross-sections through

$$\sigma_m = \frac{2n_m}{N_e l_s} \left(\frac{hc}{\lambda} \right)^m \left(\frac{mn^2}{\pi} \right)^{1/2} \exp \left[-\frac{\alpha l_s}{2} \left(\frac{\lambda}{\lambda/2} \right)^{1/2} \right]$$

where the m-photon cross section is given as a function of the solid atom density (N_e), the Gaussian pulse peak intensity (I_0), the pulse duration (τ), the critical electron density (n_c), and α, which describes the
avalanche ionization relevance[73]. Thus, through \(f_{\text{d},1} \) values, we determined \(I_0 \) and assuming the typical \(n_e \) value of 2 \(\times \) 10\(^{27} \) electrons/ m\(^3\) and \(\alpha = 10^{-3} \) m\(^2\)/J [38,69,73,74], the cross-sections of As\(_2\)S\(_3\) and As\(_2\)Se\(_3\) were determined to be 2 \(\times \) 10\(^{-55} \) m\(^2\)/photon \(-2\) and 2 \(\times \) 10\(^{-58} \) m\(^2\)/photon \(-1\), respectively.

Fig. 3a shows an AFM micrograph and trace profile of ablated lines on As\(_2\)S\(_3\) applying 60 nJ of pulse energy and \(N = 10 \), from which we determined the depth of the lines to be approximately 300 nm. The corresponding AFM 3D-micrograph is shown in Fig. 3b. For ablated lines on As\(_2\)Se\(_3\), applying 23 nJ of pulse energy and \(N = 10 \), we have determined a line depth of approximately 150 nm, as observed in Fig. 3c. The AFM 3D-micrograph of the ablated lines on As\(_2\)Se\(_3\) sample is shown in Fig. 3d. From AFM results obtained for all experiments performed on As\(_2\)S\(_3\) and As\(_2\)Se\(_3\) samples, changing the number of pulses, the depth of the lines varied from \(\sim 150 \) to 400 nm and from \(\sim 100 \) to 200 nm, respectively, increasing with the pulse energy.

The typical Raman spectra of As\(_2\)S\(_3\) and As\(_2\)Se\(_3\) glasses are presented in Fig. 4a and 4b, respectively, showing the broad features characteristic of amorphous materials. The Raman spectrum of As\(_2\)S\(_3\) exhibits a broad band at 342 cm\(^{-1}\), which corresponds to the presence of the As-S antisymmetric stretching [75–79]. Additionally, two weak bands centered at 233 cm\(^{-1}\) and 490 cm\(^{-1}\) have been attributed to the As-As and S-S chemical bonds, respectively [80]. On the other hand, the Raman spectrum of As\(_2\)Se\(_3\) mainly consists of a band centered at 242 cm\(^{-1}\), which is related to the antisymmetric As-Se stretching mode [81]. There is also a weak band at 480 cm\(^{-1}\) that can be assigned to Se-Se vibrations [82].

To investigate microstructural changes between irradiated and non-irradiated regions, micro-Raman spectroscopy was employed. To complement the analyses, SEM images were also obtained for the microfabricated structures using different energies and number of pulses. Fig. 5a presents SEM images of the As\(_2\)S\(_3\) microstructures obtained using a pulse energy of 60 nJ for four different numbers of pulses: 20,000, 100, 5, and 1. These images cover different regions of the incubation curve. For all parameter variations, the formation of microcrystals induced by the laser pulse was observed. It is also noteworthy that by varying the pulse number, we were able to achieve control over the quantity and position of the crystals. As a result, we have achieved a controllable and uniform distribution of crystals, owing to the high resolution attained through the fs-laser micromachining process.

To confirm the presence of crystals formed by the action of femtosecond laser pulses, micro-Raman spectroscopy was performed over the range of 100 to 700 cm\(^{-1}\). In Fig. 5b, the Raman spectrum of the microstructured line is presented for two different regions: the crystals (gray line) and the ablated area (black line). The spectrum of the ablated region, which contains the remaining material, shows the characteristic bands of As\(_2\)S\(_3\), indicating no significant changes to the material’s structure due to fs-laser pulse excitation. On the other hand, the new sharp peaks at 181, 270, 369, and 560 cm\(^{-1}\) in the gray curve confirm the crystalline nature of the structures seen in SEM images and suggest material oxidation and the crystallization of arsenic oxide [83]. The \(A_{1g} \) modes may be found at 369 and 560 cm\(^{-1}\), corresponding to an As-O-As bending vibrations [84]. Finally, there is an \(E_g \) mode at 181 cm\(^{-1}\) and a \(T_{2g} \) mode at 270 cm\(^{-1}\) [83].

The same behavior was observed for the microstructure of As\(_2\)Se\(_3\). Fig. 6a shows SEM images obtained using a pulse energy of 24 nJ for four different pulse superposition numbers: 20,000, 100, 5, and 1. Similarly, for all used parameters, the formation of microcrystals induced by the laser pulse was observed. We also achieved a uniform distribution of the crystals by manipulating the laser parameters and, thus, the amount of
crystals. In Fig. 6b, the Raman spectrum of the microstructured line in As$_2$Se$_3$ is presented for two different regions: the crystals (gray line) and the ablated area (black line). The spectrum of the ablated region, which contains the remaining material, exhibits the characteristic bands of the As$_2$Se$_3$ film, indicating no significant changes to the material’s structure due to laser excitation. The Raman spectrum of the formed crystals also exhibits alterations, with new peaks appearing at 189, 269, and 370 cm$^{-1}$, which are most likely related to species formed due to a photo-induced chemical reaction on the film surface [83]. These features can be attributed to the formation of arsenic oxide, as previously observed through the photo-oxidation of the material. The A$_{1g}$ mode is identified at 370 cm$^{-1}$, corresponding to As-O-As bending vibrations [83]. Additionally, there is an Eg mode at 189 cm$^{-1}$ and a T$_{2g}$ mode at 269 cm$^{-1}$ [83].

EDX analyses of the microstructures produced in As$_2$S$_3$, shown in Fig. 7, reveal that the formed microcrystals exhibit a higher concentration of oxygen and lower concentration of sulfur compared to non-irradiated regions of the film, which aligns with the Raman measurements described earlier. Berkes [85] proposed a model suggesting the occurrence of the following photochemical reaction

$$\text{As}_2\text{S}_3 \xrightarrow{h\nu} 2\text{As} + 3\text{S}. \quad (5)$$

In the presence of O$_2$ and H$_2$O, arsenic then oxidizes as follows,

$$4\text{As} + 3\text{O}_2 \xrightarrow{h\nu} 2\text{As}_2\text{O}_3. \quad (6)$$

Fig. 7a displays the EDX mapping of a region within the microstructure, indicating the predominant presence of As$_2$O$_3$ crystals (Equation (6)). On the other hand, the liberated sulfur (Equation (5)) appears in smaller quantities, existing as tiny, likely crystalline, materials [85], as identified in the sulfur map shown in Fig. 7a. EDX mapping was also conducted on a single As$_2$O$_3$ crystal (Fig. 7b), revealing significant amounts of arsenic and oxygen without any sulfur. Fig. 7c presents the Raman spectrum, indicating 36 % arsenic, 54 % sulfur, and 10 % oxygen, with an experimental error of 5 %. Despite conducting measurements in various regions of Fig. 7b as indicated by 1 and 2, no other composition was observed, as it was not feasible to analyze each microcrystal individually due to their size. This suggests that the composition approximates the stoichiometric one of As$_2$S$_3$ glass, enriched in oxygen. The results presented here, caused by photo-oxidation, have been previously observed by other research groups using other types of irradiation [86–89], but without the precise control offered by femtosecond pulses.

EDX analyses of the microstructures of As$_2$Se$_3$, as shown in Fig. 8, indicate that the formed microcrystals exhibit a higher concentration of arsenic and oxygen compared to non-irradiated regions of the film, supporting the Raman measurements described earlier. Based on the proposed model, a photochemical reaction is suggested

$$\text{As}_2\text{Se}_3 \xrightarrow{h\nu} x\text{As} + \text{As}_2\text{S}_3. \quad (7)$$

where 0 < x < 2. In the presence of O$_2$ and H$_2$O, arsenic oxidizes in a similar manner to Equation (6).

Fig. 8a shows the EDX mapping of a region within the microstructure, indicating the presence of As$_2$O$_3$ crystals (Eq. (7)). To enhance the resolution, EDX mapping was carried out on a single As$_2$O$_3$ crystal (Fig. 8b), revealing significant amounts of arsenic and oxygen. Additionally, the presence of selenium in the crystal is evident. In contrast to As$_2$S$_3$ glass, there is a depletion of arsenic on the surface surrounding the As$_2$O$_3$ crystal, resulting in a higher selenium concentration as expected from Eq. (7), leading to the formation of Se-Se bonds around the As$_2$O$_3$ crystal [90]. Such a result is consistent with the Raman spectroscopy, which exhibits a peak at 242 cm$^{-1}$, attributed to different selenium atom sites [81], Fig. 8c displays the EDX spectrum, indicating the presence of 36 % arsenic, 56 % selenium, and 8 % oxygen, with a 5 % error. Despite conducting measurements in various regions of image b in Fig. 7, as indicated by 1 and 2, no other composition was observed, as it was not feasible to analyze each microcrystal individually due to their size, indicating that the composition is approximately the stoichiometric composition of As$_2$Se$_3$ sample, enriched in oxygen, as the glass response dominates.

4. Conclusions

In this study, we demonstrate the incubation process with fs-laser pulses at 1030 nm on As$_2$S$_3$ and As$_2$Se$_3$ chalcogenide glasses. For As$_2$S$_3$, we have determined the material threshold fluence to be 0.67 J/cm2 for a single pulse and 0.32 J/cm2 for a large number of incident pulses on the sample. Similarly, for As$_2$Se$_3$, the material threshold fluence is 0.24 J/cm2 for a single pulse and 0.13 J/cm2 for a large number of pulses on the sample. Our findings reveal a small incubation factor, indicating a gradual decrease in the threshold fluence with the increasing number of pulses. In other words, a significant reduction in threshold fluence requires numerous pulses. Additionally, microscopy and spectroscopy analyses reveal the photo-oxidation of the fs-laser micromachined material with the ability to induce a localized formation of As$_2$O$_3$ crystals.
Fig. 5. A) SEM images of the As$_2$S$_3$ microstructures obtained using a pulse energy of 60 nJ for four different numbers of pulses and b) Raman spectra of the microstructured line for two different regions: the crystals (gray line) and the ablated area (black line).

Fig. 6. A) SEM images of the As$_2$Se$_3$ microstructures obtained using a pulse energy of 24 nJ for four different numbers of pulses and b) Raman spectra of the microstructured line for two different regions: the crystals (gray line) and the ablated area (black line).

CRediT authorship contribution statement

Kelly T. Paula: Writing – review & editing, Writing – original draft, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Nikita S. Dutta: Writing – review & editing, Resources. Juliana M.P. Almeida: Writing – review & editing, Resources, Methodology. L.K. Nolasco: Writing – original draft, Formal analysis. Marcelo B. Andrade: Writing – review & editing, Data curation. Craig B. Arnold: Writing – review & editing, Resources, Investigation. Cleber R. Mendonça: Writing – review & editing, Writing – original draft, Supervision, Project administration, Methodology, Funding acquisition, Formal analysis, Conceptualization.
Fig. 7. a) EDX mapping of the microstructured line on As$_2$S$_3$ film. b) EDX mapping conducted on a single As$_2$O$_3$ crystal. c) EDX spectrum indicating the composition of the analyzed material.
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

Authors are grateful to São Paulo Research Foundation (FAPESP, grant 2018/11283-7, 2013/05350-0), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance Code 001, CNPq, Army Research Laboratory W911NF-17-1-0123, and Air Force Office of Scientific Research (FA9550-23-1-0664).

References

[14] C. Lai, M. Calvaresi, K. Reichwald, H. Bae, M. Vafaeinezhad, T. Meyer-Zedler, et al., Design and test of a rigid endomicroscopic system for multimodal imaging and...

Fig. 8. a) EDX mapping of the microstructured line on As$_2$Se$_3$ film. b) EDX mapping conducted on a single As$_2$O$_3$ crystal. c) EDX spectrum indicating the composition of the analyzed material.
K.T. Paula et al.

