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A B S T R A C T   

Laser surface structuring has emerged as a versatile technology for precise and localized material processing. When dealing with femtosecond lasers, thermal effects 
and collateral damage are reduced due to nonlinear light-matter interaction, improving the processing. This study explores the fabrication of microstructures using 
femtosecond pulses on thin films of chalcogenide glasses, which can be used for photonics applications, such as waveguides, fiber lasers, and photonic crystals. 
Moreover, the photoinduced changes in chalcogenide glasses have opened up new possibilities in optoelectronics, data storage, and other applications. Femtosecond 
laser machining of amorphous thin films of As2S3 and As2Se3 using femtosecond laser pulses is investigated through various microscopy techniques and spectroscopy 
tools, focusing on the impact of incubation effects and controlled photo-oxidation. This research contributes to a deeper understanding of the interaction of ultrafast 
pulses with chalcogenide glasses, promoting further advancements in photonics and optoelectronic applications.   

1. Introduction 

Laser surface structuring has been the subject of significant research 
and development in recent years, proving a versatile technology for 
spatially localized processing of materials [1–3]. Novel laser-based ap-
proaches have been studied to create functional micro- and nano-
structures with high precision and reproducibility, controlling 
important properties suitable for applications, including photonics 
[4–6], electronics [7–10], chemical sensors [11–13], biodevices 
[14,15], microfluidics [16,17], and medical systems [18]. 

Femtosecond laser micromachining, in particular, is favored for its 
ability to process various materials, such as glasses [19–27], polymers 
[28–32], metals [33–35], and semiconductors [36–38], with reduced 
thermal effects and collateral damage that can be controlled by choosing 
the irradiance parameters, also allowing spatial localization of the 
processing due to the nonlinear light-matter interactions. Furthermore, 
it is an alternative to standard lithographic processes, producing com-
plex structures in a single step, with high processing speed in ambient 
conditions, without the need for clean rooms and photomasks. 

Femtosecond laser micromachining depends largely on the process 
parameters, including pulse duration, wavelength, laser fluence, and 

number of incident laser pulses. In particular, incubation effects that 
arise in multipulse and high repetition rate processing scenarios has 
generated great interest in the damage threshold fluence, the minimum 
fluence required to cause optical damage [39,40]. Thus, understanding 
changes in the material upon fs-laser processing is of great importance 
for optimizing the microfabrication process, enhancing its efficiency 
when ultrafast lasers and high repetition rates are used. 

In the context of fabricating functional microstructures using 
femtosecond pulses, chalcogenide glasses are excellent candidates given 
their prospects for photonics applications, as they present desirable 
properties, such as low phonon energies, low optical losses, high linear 
and nonlinear refractive indexes, and a broad region of infrared trans-
parency [41–45]. These properties, combined with their low melting 
temperatures, make them suitable for optics, photonics, and electronics 
applications [46–48]. These glasses exhibit unique characteristics 
stemming from their different chemical compositions. Arsenic trisulfide, 
known for its wider bandgap and transparency in the infrared region, 
contrasts with arsenic triselenide, which possesses a narrower bandgap, 
broader transparency extending into the visible and near-infrared re-
gions, and generally higher refractive index. Understanding these 
fundamental differences is crucial for tailoring the optical and thermal 
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properties of these materials, informing their applications in areas such 
as infrared optics, fiber optics, and beyond. Many photonic devices 
based on chalcogenide glasses have been successfully fabricated by 
femtosecond laser micromachining, including optical waveguides 
[49,50], infrared fiber lasers [51], nonlinear optical switches [52], and 
photonic crystals [53]. 

Photoinduced changes in chalcogenide glasses exhibit extraordinary 
characteristics that have prompted further research in optoelectronics 
[54,55]. Recently, there has been a significant increase in exploring a 
wider range of applications for chalcogenide glasses, including their use 
in photoresists [56], optical memories[57], optoelectronic displays[58], 
and reconfigurable optical circuits [59]. The transition between disor-
dered amorphous and ordered crystalline states, which can be achieved 
through local heating, is accompanied by electrical resistivity and op-
tical reflectivity changes [60]. Additionally, when exposed to light, 
chalcogenide glasses exhibit structural and physicochemical changes, 
leading to photocrystallization, photopolymerization, photoexpansion, 
and photodissociation [61,62]. These changes can result in a distinct 
contrast between the two solid states, proving beneficial for data storage 
applications [63]. 

In this study, we investigated the microfabrication process of 
amorphous thin films of arsenic sulfide (As2S3) and arsenic selenide 
(As2Se3) with femtosecond laser pulses at 1030 nm, using different mi-
croscopy techniques to assess incubation effects. Moreover, controlled 
crystallization was achieved depending on the number of femtosecond 
pulses, and it was evaluated through scanning electron microscopy 
(SEM), energy dispersive X-ray spectroscopy (EDX), and micro-Raman 
spectroscopy. 

2. Experimental 

Chalcogenide solutions were prepared though the dissolution of 
arsenic trisulfide or arsenic selenide (alfa aesar 99.999 %) in propyl-
amine – C3H9N (Sigma-Aldric > 99 %) – with a concentration of 133 g/L 
in a nitrogen-atmosphere glovebox. Thin films of As2S3 and As2Se3 were 
prepared from their respective solutions using spin-coating, typically 
carried out at 2000 rpm for 10–––20 s onto glass coverslip as substrates. 
For solvent removal, the thin films were vacuum baked at 60 ◦C for 1 h 
and then at 110 ◦C for 7 h, resulting in films with 500 nm of thickness. 

Micromachining was performed on the samples using 216-fs pulses 
from a diode-pumped Yb:KGW laser system, operating at a central 
wavelength of 1030 nm, with repetition rate in the range of 20 Hz − 200 
kHz and scanning speed of 12.5 and 25 μm/s. The laser beam was 
focused by a 40x microscope objective (numerical aperture of 0.65) at 
the surface of AS2S3 and AS2Se3 films. Samples were placed in an x-y-z 
translation stage that allowed motion with constant speed in the plane 
perpendicular to the laser propagation. Micromachining was monitored 
in real-time with the aid of a CCD camera and backlight illumination, 
and was carried out in ambient air, under atmospheric pressure, and at 
room temperature. 

Laser micromachining was performed using distinct pulse energies 
(Eo) and different numbers of pulses per spot (N), varying from 1 to ~ 
20,000. N was varied by changing the laser repetition rate and scanning 
speed of the translational stage. For each N, groups of lines 500-μm long, 
separated by 10 µm, were produced to evaluate the influence of pulse 
energy on the line width. 

The microstructures were characterized by optical microscopy using 
a Zeiss LSM-700 microscope, scanning electron microscopy (SEM) using 

Fig. 1. For 10 of number of pulses; a) optical images of As2S3 microstructures showing the evolution of the line width with the pulse energy. b) The respective line 
radius squares as a function of the pulse energy. c) Optical images of As2Se3 microstructures showing the evolution of the line width with the pulse energy. d) The 
respective line radius squares as a function of the pulse energy. 

K.T. Paula et al.                                                                                                                                                                                                                                



Applied Surface Science 654 (2024) 159449

3

an FEI Inspect-F50 microscope, and also by atomic force microscopy 
(AFM) using a Nanosurf’s easyScan 2® microscope. Optical properties 
were analyzed by UV–Vis spectroscopy using a Shimadzu UV-1800 
spectrophotometer. Raman spectra of the samples were acquired using 
a LabRAM HR Evolution confocal micro-Raman system with a liquid 
nitrogen-cooled CCD detector. Chemical analysis was conducted using 
Energy-dispersive X-ray spectroscopy (EDX) with a Quantax EDX-Bruker 
system, which was coupled to a scanning electron microscope (TM3000- 
Hitachi). 

3. Results and discussion 

Fig. 1 presents optical images of ablated lines using N = 10 and pulse 
energies ranging from 22 to 95 nJ (Fig. 1a) and from 6 to 33 nJ (Fig. 1c), 
respectively, for As2S3 and As2Se3 samples. From the optical microscopy 
images, it was possible to measure the half line width (r) for each group 
of lines, which increases with the energy. The experimental data, which 
presents the square of r as a function of pulse energy (E0), are shown in 
Fig. 1b and 1d, respectively for As2S3 and As2Se3 samples. For this 
particular set of data (N = 10), r ranges from ~ 0.7 to 1.3 µm and from ~ 
0.6 to 1.2 µm, respectively, for lines microstructured in As2S3 and 
As2Se3. In a larger set of experiments performed on both As2S3 and 
As2Se3 samples, while changing the number of pulses, the average radius 
varied from ~ 0.5 to 1.6 µm and from ~ 0.5 to 1.3 µm, respectively. 

As the laser beam presents a Gaussian spatial distribution, it was 
possible to determine the threshold energy (Eth) for damage, applying 
the zero damage method [64] according to 

r2 =
w2

0

2
ln
(

E0

Eth

)

(1)  

in which w0 is the beam waist radius at the focus. By fitting the data 
displayed in Fig. 1b and 1d (solid lines), we have determined threshold 
energies of 12.8 nJ and 3.7 nJ, respectively, for As2S3 and As2Se3 ablated 
lines, when using N = 10. Also from the fittings, we determined the 
beam radius at the focus to be w0 = 1.2 μm. With such values and using 
Eth previously determined, we calculated the threshold laser fluence 
(Fth), whose values vary from 0.30 to 0.66 J/cm2 for As2S3 and from 0.14 
to 0.24 J/cm2 for As2Se3. 

We have observed a decrease in the threshold fluence with the 
number of pulses. This behavior is well known and commonly explained 
in terms of the incubation effect, being investigated in a wide range of 
materials, including semiconductors, metals, dielectrics, ceramics, and 
polymers [65–67]. Different models have been proposed to describe 
such an effect. Even though it is widely used for different materials, the 
probabilistic model of defect accumulation [39] does not provide the 
saturation of threshold fluence observed in Fig. 2. For this reason, the 
model that best describes our experimental results is the exponential 
defect accumulation model [68]. The model proposes that the proba-
bility of creating defects increases with the number of pulses, thus 
decreasing the damage threshold fluence. In this way, a constant value 
of the threshold fluence for a high number of pulses is established when 
the saturation of the defects is reached. In this model, the threshold 
fluence after irradiation of N pulses (Fth,N), can be related to the single 
pulse threshold fluence (Fth,1) and the infinite pulse threshold fluence 
(Fth,∞) following the expression, 

Fth,N =
(
Fth,1 − Fth,∞

)
e− k(N − 1) +Fth,∞ (4)  

where k is the incubation parameter. 
The incubation curves obtained from fs-laser micromachining for 

As2S3 and As2Se3 are shown in Fig. 2. It Is possible to observe, for both 
cases, a decrease in the threshold fluence in the region from ~ 1 up to 
100 pulses. This decrease in the threshold fluence ranges from 0.67 J/ 
cm2 to 0.32 J/cm2 for As2S3, and from 0.24 J/cm2 to 0.13 J/cm2 for 
As2Se3, which then reaches saturation with an increasing number of 
pulses. By fitting the data, the incubation parameter was determined to 
be (0.06 ± 0.01) for As2S3 and (0.05 ± 0.01) for As2Se3, which is 
comparable to the values found for GaN and CVD diamond of (0.02 ±
0.01) and (0.14 ± 0.03) at 1030 nm, respectively [69]. Much like the 
GaN and diamond cases, the gradual change in the fluence threshold 
with the number of pulses suggests a low incubation parameter, indi-
cating that a substantial quantity of pulses is necessary to induce damage 
to the material. 

The disparity in the damage threshold fluence for the single pulse 
case seen in Fig. 2(a-b) for the As2S3 and As2Se3 samples can be 
explained by the different nonlinear ionization mechanisms present 
during fs-laser micromachining. Since the energy gap (Eg) is 2.562 eV for 
As2S3 and Eg = 1.928 eV for As2Se3 [70,71], laser excitation at 1030 nm 
(1.2 eV) results in 3-photon absorption and 2-photon absorption, 
respectively, confirmed through the determination of the Keldysh 
parameter, which yielded values greater than 1.5 for both samples [72]. 

Nevertheless, one can extrapolate the two and three-photon cross- 
sections through 

σm =
2ncr

NsτIm
0

(
hc
λ

)m(mln2
π

)1/2

exp− 1
[

α
4

τI0

( π
ln2

)1/2
]

where the m-photon cross section is given as a function of the solid atom 
density (Ns), the Gaussian pulse peak intensity (I0), the pulse duration 
(τ), the critical electron density (ncr), and α, which describes the 

Fig. 2. Incubation curves for a) As2S3 and b) As2Se3 films. The data is fit to the 
exponential defect accumulation model [60] shown by the solid line. 
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avalanche ionization relevance[73]. Thus, through Fth,1 values, we 
determined I0, and assuming the typical ncr value of 2 × 1027 electrons/ 
m3 and α = 10− 3 m2/J [38,69,73,74], the cross-sections of As2S3 and 
As2Se3 were determined to be 2 × 10− 95 m6s2photon− 2 and 2 × 10− 58 

m4s1photon− 1, respectively. 
Fig. 3a shows an AFM micrograph and trace profile of ablated lines 

on As2S3 applying 60 nJ of pulse energy and N = 10, from which we 
determined the depth of the lines to be approximately 300 nm. The 
corresponding AFM 3D-micrograph is shown in Fig. 3b. For ablated lines 
on As2Se3, applying 23 nJ of pulse energy and N = 10, we have deter-
mined a line depth of approximately 150 nm, as observed in Fig. 3c. The 
AFM 3D-micrograph of the ablated lines on As2Se3 sample is shown in 
Fig. 3d. From AFM results obtained for all experiments performed on 
As2S3 and As2Se3 samples, changing the number of pulses, the depth of 
the lines varied from ~ 150 to 400 nm and from ~ 100 to 200 nm, 
respectively, increasing with the pulse energy. 

The typical Raman spectra of As2S3 and As2Se3 glasses are presented 
in Fig. 4a and 4b, respectively, showing the broad features characteristic 
of amorphous materials. The Raman spectrum of As2S3 exhibits a broad 
band at 342 cm− 1, which corresponds to the presence of the As-S anti-
symmetric stretching [75–79]. Additionally, two weak bands centered at 
233 cm− 1 and 490 cm− 1 have been attributed to the As-As and S-S 
chemical bonds, respectively [80]. On the other hand, the Raman 
spectrum of As2Se3 mainly consists of a band centered at 242 cm− 1, 
which is related to the antisymmetric As-Se stretching mode [81]. There 
is also a weak band at 480 cm− 1 that can be assigned to Se-Se vibrations 
[82]. 

To investigate microstructural changes between irradiated and non- 
irradiated regions, micro-Raman spectroscopy was employed. To com-
plement the analyses, SEM images were also obtained for the 

microfabricated structures using different energies and number of pul-
ses. Fig. 5a presents SEM images of the As2S3 microstructures obtained 
using a pulse energy of 60 nJ for four different numbers of pulses: 
20,000, 100, 5, and 1. These images cover different regions of the in-
cubation curve. For all parameter variations, the formation of micro-
crystals induced by the laser pulse was observed. It is also noteworthy 
that by varying the pulse number, we were able to achieve control over 
the quantity and position of the crystals. As a result, we have achieved a 
controllable and uniform distribution of crystals, owing to the high 
resolution attained through the fs-laser micromachining process. 

To confirm the presence of crystals formed by the action of femto-
second laser pulses, micro-Raman spectroscopy was performed over the 
range of 100 to 700 cm− 1. In Fig. 5b, the Raman spectrum of the 
microstructured line is presented for two different regions: the crystals 
(gray line) and the ablated area (black line). The spectrum of the ablated 
region, which contains the remaining material, shows the characteristic 
bands of As2S3, indicating no significant changes to the material’s 
structure due to fs-laser pulse excitation. On the other hand, the new 
sharp peaks at 181, 270, 369, and 560 cm− 1 in the gray curve confirm 
the crystalline nature of the structures seen in SEM images and suggest 
material oxidation and the crystallization of arsenic oxide [83]. The 
A1g modes may be found at 369 and 560 cm− 1, corresponding to an As- 
O-As bending vibrations [84]. Finally, there is an Eg mode at 181 
cm− 1 and a T2g mode at 270 cm− 1 [83]. 

The same behavior was observed for the microstructure of As2Se3. 
Fig. 6a shows SEM images obtained using a pulse energy of 24 nJ for four 
different pulse superposition numbers: 20,000, 100, 5, and 1. Similarly, 
for all used parameters, the formation of microcrystals induced by the 
laser pulse was observed. We also achieved a uniform distribution of the 
crystals by manipulating the laser parameters and, thus, the amount of 

Fig. 3. A) afm image of as2S3 microstructure and the respective profile trace using 10 pulses, pulse energy of 60 nJ, and b) the respective AFM 3D-micrograph. c) 
AFM image of AS2Se3 microstructure and the respective profile trace using 10 pulses, pulse energy of 23 nJ, and d) the respective AFM 3D-micrograph. 
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crystals. In Fig. 6b, the Raman spectrum of the microstructured line in 
As2Se3 is presented for two different regions: the crystals (gray line) and 
the ablated area (black line). The spectrum of the ablated region, which 
contains the remaining material, exhibits the characteristic bands of the 
As2Se3 film, indicating no significant changes to the material’s structure 
due to laser excitation. The Raman spectrum of the formed crystals also 
exhibits alterations, with new peaks appearing at 189, 269, and 370 
cm− 1, which are most likely related to species formed due to a photo-
induced chemical reaction on the film surface [83]. These features can 
be attributed to the formation of arsenic oxide, as previously observed 
through the photo-oxidation of the material. The A1g mode is identified 
at 370 cm− 1, corresponding to As-O-As bending vibrations [83]. Addi-
tionally, there is an Eg mode at 189 cm− 1 and a T2g mode at 269 cm− 1 

[83]. 
EDX analyses of the microstructures produced in As2S3, shown in 

Fig. 7, reveal that the formed microcrystals exhibit a higher concen-
tration of oxygen and lower concentration of sulfur compared to non- 
irradiated regions of the film, which aligns with the Raman measure-
ments described earlier. Berkes [85] proposed a model suggesting the 
occurrence of the following photochemical reaction 

As2S3 ̅→
hν 2As+ 3S. (5)  

In the presence of O2 and H2O, arsenic then oxidizes as follows, 

4As+ 3O2 ̅̅ →
H2O 2As2O3 (6) 

Fig. 7a displays the EDX mapping of a region within the micro-
structure, indicating the predominant presence of As2O3 crystals 
(Equation (6)). On the other hand, the liberated sulfur (Equation (5)) 
appears in smaller quantities, existing as tiny, likely crystalline, mate-
rials [85], as identified in the sulfur map shown in Fig. 7a. EDX mapping 
was also conducted on a single As2O3 crystal (Fig. 7b), revealing sig-
nificant amounts of arsenic and oxygen without any sulfur. Fig. 7c 
presents the EDX spectrum, indicating 36 % arsenic, 54 % sulfur, and 10 
% oxygen, with an experimental error of 5 %. Despite conducting 
measurements in various regions of Fig. 7b as indicated by 1 and 2, no 
other composition was observed, as it was not feasible to analyze each 
microcrystal individually due to their size. This suggests that the 
composition approximates the stoichiometric one of As2S3 glass, 
enriched in oxygen. The results presented here, caused by photo- 
oxidation, have been previously observed by other research groups 
using other types of irradiation [86–89], but without the precise control 
offered by femtosecond pulses. 

EDX analyses of the microstructures of As2Se3, as shown in Fig. 8, 
indicate that the formed microcrystals exhibit a higher concentration of 
arsenic and oxygen compared to non-irradiated regions of the film, 
supporting the Raman measurements described earlier. Based on the 
proposed model, a photochemical reaction is suggested 

As2Se3 ̅→
hν xAs+As2− xSe3 (7)  

where 0 < x < 2. In the presence of O2 and H2O, arsenic oxidizes in a 
similar manner to Equation (6). 

Fig. 8a shows the EDX mapping of a region within the microstruc-
ture, indicating the presence of As2O3 crystals (Eq. (7)). To enhance the 
resolution, EDX mapping was carried out on a single As2O3 crystal 
(Fig. 8b), revealing significant amounts of arsenic and oxygen. Addi-
tionally, the presence of selenium in the crystal is evident. In contrast to 
As2S3 glass, there is a depletion of arsenic on the surface surrounding the 
As2O3 crystal, resulting in a higher selenium concentration as expected 
from Eq. (7), leading to the formation of Se-Se bonds around the As2O3 
crystal [90]. Such a result is consistent with the Raman spectroscopy, 
which exhibits a peak at 242 cm− 1, attributed to different selenium atom 
sites [81]. Fig. 8c displays the EDX spectrum, indicating the presence of 
36 % arsenic, 56 % selenium, and 8 % oxygen, with a 5 % error. Despite 
conducting measurements in various regions of image b in Fig. 7, as 
indicated by 1 and 2, no other composition was observed, as it was not 
feasible to analyze each microcrystal individually due to their size, 
indicating that the composition is approximately the stoichiometric 
composition of As2Se3 sample, enriched in oxygen, as the glass response 
dominates. 

4. Conclusions 

In this study, we demonstrate the incubation process with fs-laser 
pulses at 1030 nm on As2S3 and As2Se3 chalcogenide glasses. For 
As2S3, we have determined the material threshold fluence to be 0.67 J/ 
cm2 for a single pulse and 0.32 J/cm2 for a large number of incident 
pulses on the sample. Similarly, for As2Se3, the material threshold flu-
ence is 0.24 J/cm2 for a single pulse and 0.13 J/cm2 for a large number 
of pulses on the sample. Our findings reveal a small incubation factor, 
indicating a gradual decrease in the threshold fluence with the 
increasing number of pulses. In other words, a significant reduction in 
threshold fluence requires numerous pulses. Additionally, microscopy 
and spectroscopy analyses reveal the photo-oxidation of the fs-laser 
micromachined material with the ability to induce a localized forma-
tion of As2O3 crystals. 

Fig. 4. Raman spectra of a) As2S3 film and As2Se3 film.  
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Fig. 5. A) sem images of the as2S3 microstructures obtained using a pulse energy of 60 nJ for four different numbers of pulses and b) Raman spectra of the 
microstructured line for two different regions: the crystals (gray line) and the ablated area (black line). 

Fig. 6. A) sem images of the as2Se3 microstructures obtained using a pulse energy of 24 nJ for four different numbers of pulses and b) Raman spectra of the 
microstructured line for two different regions: the crystals (gray line) and the ablated area (black line). 
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Fig. 7. a) EDX mapping of the microstructured line on As2S3 film. b) EDX mapping conducted on a single As2O3 crystal. c) EDX spectrum indicating the composition 
of the analyzed material. 
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